
Diss. ETH No. 26723

On Generalizations of
Composable Security

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich
(Dr. sc. ETH Zurich)

presented by

Daniel Jost
MSc ETH in Computer Science, ETH Zurich

born on February 26, 1989
citizen of Eriswil BE, Switzerland

accepted on the recommendation of

Prof. Dr. Ueli Maurer, examiner
Prof. Dr. Dennis Hofheinz, co-examiner

Prof. Dr. Jesper Buus Nielsen, co-examiner

2020

c© 2020
Daniel Jost
ORCID: 0000-0002-6562-9665

DOI: 10.3929/ethz-b-000417544

https://orcid.org/0000-0002-6562-9665
https://doi.org/10.3929/ethz-b-000417544

Acknowledgments

First and foremost, I would like to thank my advisor Ueli Maurer for
the opportunity to do a PhD in the fascinating field of cryptography.
His passion for research and quest for finding the right answers to
fundamental problem in cryptography have deeply inspired me and
shaped my interests in research. He always had time for me and his
unique way of thinking led to many fruitful discussions.

Sincere thanks go to Dennis Hofheinz and Jesper Buus Nielsen for
willing to co-referee this thesis and their valuable feedback.

For the countless interesting discussions and all the good times
we have had together, I would like to take the opportunity to thank
all the current and former members of the Information Security and
Cryptography Research Group: Joël Alwen, Christian Badertscher,
Fabio Banfi, Sandro Coretti, Grégory Demay, Robert Enderlein, Martin
Hirt, David Lanzenberger, Chen-Da Liu Zhang, Christian Matt, Marta
Mularczyk, Christopher Portmann, Pavel Raykov, Guilherme Rito,
Gregor Seiler, Björn Tackmann, Daniel Tschudi, Jiamin Zhu, and Vassilis
Zikas. It would not have been the same without you all!

I would like to express special gratitude to all my co-authors during
my PhD studies—Chen-Da, Christian B., Christian M., and Marta—for
the exciting former and hopefully future collaborations and the fruitful
exchange of ideas. Moreover, I thank Beate Bernhard and Claudia
Günthart for their administrative support.

Last but not least, this thesis would not have been possible without
the invaluable encouragement of my family, and the support of my dear
friends.

Abstract

Cryptography is a cornerstone for the protection of the digital society,
and security definitions lie at the heart of cryptographic research. Their
importance stems from the fact that for a cryptographic scheme, in
contract to its correctness, security cannot simply be demonstrated.
Rather, the widely accepted paradigm is to build confidence by mathe-
matically proving their security. This foremost requires to have a sound
and meaningful mathematical security model, such that the implied
guarantees actually correspond to the intended properties.

The paradigm of provable security can be traced back to Shannon’s
seminal work on the one-time pad encryption. His custom-made and
purely information-theoretic definition, however, does not handily gener-
alize to other types of schemes and flavors of security. Nowadays, most
security definitions are game-based, meaning that a protocol is secure if
an attacker is unable to perform a certain set of attacks in a prescribed
and simplified interaction with the scheme. This, however, has severe
drawbacks. First, the match between the formal security definition and
the intended use-case of the corresponding application is not performed
rigorously, but typically only argued informally. Second, such security
definitions do not compose. For instance, a provably secure symmetric
encryption scheme might turned out insecure when combined with a
provably secure key-agreement scheme, due to the lack of composability
of the respective definitions.

A in many respects superior approach are composable (sometimes
called simulation-based) security frameworks. In such a framework, the
goal of a cryptographic primitive can be seen as providing a construction
of a so-called ideal resource from an assume resource, for a well-defined
construction notion. The ideal resource thereby formalizes what must be

vi Abstract

achieved—in any possible context—in a clean and abstract manner. For
instance, the goal of an encryption scheme can be seen as construction
of a secure channel that does not leak the messages, but at most their
length, to an eavesdropper, hence making the achieved guarantees
explicit rather than listing excluded attacks. The assumed resource, on
the other hand, makes explicit what is required to be available to the
involved parties, e.g., a shared secret key and an authentication channel.
Moreover, by design, those frameworks ensure that the security of an
overall scheme is directly implied by the security of its components,
making them well suited for modular protocol designs and analyses.

However, up to now, the adoption of composable security state-
ments has been hindered by a number of obstacles. In particular, the
imposed abstraction boundaries lack flexibility, impeding modularity
as it prevents certain resources from being decomposed. Moreover,
the traditional types of composable security statements are frequently
overly specific, e.g., encoding a very particular assumed or constructed
resource, hindering their reuse. Some popular abstraction boundaries,
such as the random oracle, are even known to be outright impossi-
ble to construct from resources readily available in the real world. In
addition, composable frameworks are also met with some skepticism
because of many impossibility results; goals such as commitments and
zero-knowledge that are achievable in a stand-alone sense were shown
to be unachievable composably (without a setup). In particular, in
the context of adaptive security, the so-called “simulator commitment
problem” arises: once a party gets corrupted, an efficient simulator is
unable to be consistent with its pre-corruption outputs.

Generalizing Constructive Cryptography. In this thesis, we gen-
eralize and extend the Constructive Cryptography framework in three
ways to overcome those limitations.

First, we propose the extension of the Constructive Cryptography
framework by so-called global event histories, to enable more flexible
abstraction boundaries. That is, in addition to the traditional input-
output behavior, each resource can trigger events from a predefined set.
Other resources can then depend on the global event history, i.e., on
which events having occurred so far and in which order. For example,
a key resource (one module) can now export the event of having been
leaked, upon which a channel (another, apparently independent module)

vii

can degrade its security guarantees.
Second, we propose the notion of context-restricted constructions.

Context-restricted constructions allow us to model that certain resources
can only be used in an explicitly specified set of contexts. Such a notion
with explicitly limited composition guarantees is particularly useful
when dealing with abstractions such as a random oracle, where no
weaker and feasible to instantiate, yet useful abstraction boundary are
known. As an application, we then show that the notion of universal
computational extractors (UCE), introduced by Bellare et al. as an
alternative to the random oracle model, can be understood as a special
case of context-restricted constructions.

Third, we revisit the so-called simulator commitment problem, that
mainly occurs in the context of adaptive security. We introduce a
novel composable security notion that is able to express the composable
guarantees of schemes that previously only admitted standalone security
definitions, while providing clean semantics of how the guarantees
should be interpreted, holding in any environment, and being equipped
with a composition theorem. In a nutshell, we introduce interval-wise
guarantees formalizing properties that hold in between two events,
not forcing the simulation to be consistent between the intervals (the
root of the commitment issues). On a technical level, we leverage the
specification-based approach of the CC framework, where proving a
protocol π to be secure corresponds to modeling the assumed real-
world specification R, and showing that πR is contained in an ideal
specification S. We formalize interval-wise guarantees as a novel type
of specifications and develop the required theory.

A case study. Finally, we consider two-party secure messaging,
proposing the first systematic and composable security model thereof.
Taking advantage of our notion of global events, we develop a unified
and easily reusable type security statement for each of the involved
sub-protocol. This is in stark contrast to existing game-based security
treatments, where the security games of sub-protocols are tailored to
the overall protocol analysis, impeding their reuse in other protocols
and contexts. Furthermore, we utilize our novel types of specifications
to deal with the commitment problem, naturally occurring in secure
messaging where one considers adaptive exposure of parties’ secret state.

Zusammenfassung

Die Kryptographie ist ein Eckpfeiler im Schutze der digitalen Gesell-
schaft und Sicherheitsdefinitionen spielen eine zentrale Rolle in der
kryptographischen Forschung. Ihre Wichtigkeit beruht auf der Tatsache,
dass für eine kryptographisches Schema Sicherheit, im Gegensatz zu
Korrektheit, nicht empirisch demonstriert werden kann. Stattdessen ist
es der breit akzeptierte Ansatz, Vertrauen durch einen mathematischen
Sicherheitsbeweis zu bilden. Dies erfordert in erster Linie jedoch die Exis-
tenz eines sinnhaften mathematischen Sicherheitsmodells, für welches die
implizierten Garantien effektiv die gewünschten Sicherheitseigenschaften
implizieren.

Das Paradigma der beweisbaren Sicherheit kann bis zu Shannons
einflussreicher Arbeit über das One-Time-Pad Schema zurückverfolgt
werden. Jedoch lässt seine massgeschneiderte und rein informationstheo-
retische Sicherheitsdefinition nicht einfach auf andere Sicherheitsvarian-
ten verallgemeinern. Heutzutage sind die meisten Sicherheitsdefinitionen
durch ein Spiel zwischen einem Angreifer und einem Herausforderer
definiert. Das heisst, ein Schema wird sicher genannt, wenn kein An-
greifer in dieser vereinfachten Interaktion mit dem Schema eine Attacke
durchführen kann. Dies hat jedoch einige schwerwiegende Nachteile.
Ersten wird die Korrespondenz zwischen der formalen Sicherheitsdefini-
tion und der beabsichtigen Anwendung oft nicht gründlich durchgeführt,
sondern oft nur informell argumentiert. Zweitens lassen sich solche Si-
cherheitsdefinitionen nicht zusammensetzen. So kann es z.B. sein, dass
ein beweisbar sicheres symmetrisches Verschlüsselungsprotokoll sich als
unsicher hersausstellt, sobald es mit einem beweisbar sicheren Schlüssel-
tauschprotokoll kombiniert wird, weil die entsprechenden Definitionen
nicht zusammensetzbar sind.

x Zusammenfassung

Ein in vielerlei Hinsicht besserer Ansatz sind sogenannte composable
(zusammensetzbare) Sicherheits-Frameworks, welche teilweise auch si-
mulationsbasiert genannt werden. In einem solchen Framework kann das
Ziel einer kryptographischen Primitive kann dann als die Konstruktion
einer sogenannten idealen Ressource aus einer angenommen Ressource
(für einen wohldefinierten Begriff der Konstruktion) gesehen werden.
Die ideale Ressource formalisiert dabei das in jedem Kontext zu errei-
chende Ziel auf eine simple und abstrakte Art. So kann zum Beispiel das
Ziel eines Verschlüsselungsverfahren in der Konstruktion eines sicheren
Kommunikationskanals, welcher höchstens die Nachrichtenlänge einem
Mitlauscher preisgibt, gesehen werden. Folglich werden die erreichten
Garantien explizit gemacht, statt ausgeschlossene Attacken aufgelis-
tet. Auf der anderen Seite machen die angenommenen Ressourcen die
Voraussetzungen, wie z.B. einen geteilten sicheren Schlüssel oder einen
authentischen Kommunikationskanal, an die involvierten Parteien expli-
zit. Zusätzlich sind die entsprechenden Frameworks so entworfen, dass
sich die Sicherheit des Gesamtprotokolls direkt aus der Sicherheit der
Komponenten ergibt, wodurch sie besonders gut für den modularen
Protokollentwurf und die modulare Analyse geeignet sind.

Jedoch ist bis heute die Adoption von composable Sicherheitsaussa-
gen durch eine Anzahl Hemmnisse erschwert. Insbesondere lassen die
dadurch auferlegten Abstraktionsschnittstellen an Flexibilität vermissen,
wodurch sich gewisse Ressourcen nicht modular zerlegen lassen. Zusätz-
lich sind die klassischen composable Sicherheitsaussagen oft zu spezifisch
und enkodieren z.B. eine spezifische angenommene oder konstruierte
Ressource, was ihre Wiederverwendung erschweren kann. Einige verbrei-
tete Abstraktionsschnittstellen, wie z.B. das Random-Oracle, sind des
weiteren gänzlich unmöglich aus effektiv in der realen Welt vorhandenen
Ressourcen zu konstruieren.

Letztlich wird composable Sicherheits-Frameworks teilweise auch be-
dingt durch die Vielzahl Unmöglichkeitsresultate mit Skepsis begegnet.
So sind Ziele wie Commitment-Verfahlren und Zero-Knowledge-Beweise,
welche in einer isolierten Betrachtung erreichbar sind, in composable
Frameworks ohne zusätzliche Annahmen unmöglich zu erreichen. Ins-
besondere tritt im Kontext der adaptiven Sicherheit das sogenannte
Simulator-Commitment-Problem auf: sobald eine Partei korrumpiert
wird, ist ein effizienter Simulator nicht mehr in der Lage konsistent mit
seinen vorherigen Ausgaben zu sein.

xi

Erweiterungen des Constructive Cryptography Frameworks
In dieser Dissertation verallgemeinern und erweitern wir das Construc-
tive Crytpography Framework auf drei Arten, um diese Limitierungen
zu beseitigen.

Zuerst führen wir eine Erweiterung um sogenannte globale Ereignis-
historien ein, welche flexiblere Abstraktionsschnittstellen ermöglichen.
Dies bedeutet, dass jede Ressource zusätzlich zum traditionellen Input-
Output-Verhalten auch Ereignisse aus einer bestimmten Vordefinierter
Menge auslösen kann. Das Verhalten anderer Ressourcen kann dann
von dieser globalen Ereignishistorie abhängen, d.h. davon welche Er-
eignisse und in welcher Reihenfolge sie eingetreten sind. So kann z.B.
eine Schlüsselressource (ein Modul) nun das Ereignis dass der Schlüssel
geleckt wurde definieren, worauf basierend ein Kommunikationskanal
(ein anderes eigentlich unabhängiges Modul) seine Sicherheitsgarantien
abschwächen kann.

Zweitens führen wir das Konzept der kontextbeschränkten Konstruk-
tion ein. Kontextbeschränkte Konstruktionen erlauben uns zu fassen,
dass gewisse Ressourcen nur in bestimmten Menge wohldefinierten
Kontexte verwendet werden kann. Solch eine Definition mit explizit
beschränkten Kompositionsgarantien ist insbesondere dann nützlich,
wenn man es mit einer Abstraktion wie dem Random-Oracle zu tun
hat, für welches keine erreichbare schwächere aber noch nützliche Al-
ternative bekannt ist. Als eine Anwendung zeigen wir dann, dass die
Universal-Composable-Extractors (UCE), welche durch Bellare et al.
als eine alternative zum Random-Oracle eingeführt wurden, als ein
Spezialfall von kontextbeschränkten Konstruktionen aufgefasst werden
können.

Drittens greifen wir das sogenannte Simulator-Commitment-Problem
auf, welches vorwiegend im Kontext von adaptiver Sicherheit auftritt.
Wir führen einen neuartigen composable Sicherheitsbegriff ein, welcher
die composable Sicherheitsgarantien von Protokollen, für welche bisher
nur isolierte Sicherheitsdefinitionen anerkannt waren, fassen kann. Unser
Sicherheitsbegriff bietet dabei sowohl eine klare Semantik wie die ent-
sprechenden Garantien (welche in jedem Kontext gelten) zu verstehen
sind, als auch eine Kompositionstheorem. Kurz zusammengefasst führen
wir intervallbasierte Garantien ein, welche Eigenschaften formalisieren,
welche zwischen zwei Ereignissen gelten. Dadurch zwingen wir den Si-
mulator nicht, sich zwischen den einzelnen Intervallen konsistent zu

xii Zusammenfassung

verhalten, welches die Ursache für das Commitment-Problem ist. Auf
einer technischen Ebene bauen wir dafür auf dem spezifikationsbasierten
Ansatz des Constructive Cryptography Frameworks auf, wobei der Si-
cherheitsbeweis eines Protokoll π dem Modellieren der angenommenen
Spezifikation R und dem Beweis dass πR in einer idealen Spezifikation
S enthalten ist entspricht. Wir formalisieren intervallbasierte Garan-
tien als einen neuartige Typen von Spezifikationen und arbeiten die
entsprechende Theorie aus.

Ein Fallbeispiel
Zu guter Letzt betrachten wir sichere Textnachrichtenprotokolle zwi-
schen zwei Parteien und führen dazu das erste systematische und com-
posable Sicherheitsmodell ein. Unter Ausnützung unserer Definition der
globalen Ereignishistorien entwickeln wir dabei ein einheitlicher und
wiederverwendbarer Typ Sicherheitsaussage für die einzelnen Unter-
protokolle. Dies steht im Gegensatz zu existierenden spielbasierenden
Sicherheitsabhandlungen, wo die Sicherheitsspiele der einzelnen Unter-
protokolle auf die Analyse des entsprechenden übergeordneten Protokolls
massgeschneidert sind, was die Wiederverwendbarkeit in anderen Pro-
tokollen und Kontexten einschränkt. Wir verwenden dabei zusätzlich
unsere intervallbasierte Spezifikationen um das Commitment-Problem
zu handhaben, welches bei sicheren Textnachrichtenprotokollen auf-
grund der Betrachtung von Enthüllungen der Zustände der Parteien
auftritt.

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Game-Based Security Definitions 2
1.1.2 Composable Security Definitions 3

1.2 Overview and Contributions 6
1.2.1 Advancing Composable Security 7
1.2.2 A Case Study: Secure Messaging 10

1.3 Related Work . 11

2 Preliminaries 13
2.1 Notation . 13

2.1.1 General Notation and Information Theory 13
2.1.2 Pseudo-Code for Algorithms and Systems 14

2.2 Constructive Cryptography 14
2.2.1 Specifications. 15
2.2.2 The System Algebra 16
2.2.3 The Construction Notion 19
2.2.4 Relaxations . 20
2.2.5 Two Important Special Cases 23
2.2.6 An Example . 26

3 Constructive Cryptography with Events 31
3.1 Introduction . 31

3.1.1 Motivation . 31
3.1.2 Contributions . 32
3.1.3 Related Work . 33

xiv Contents

3.2 Systems with Events . 33
3.2.1 The Global Event History 33
3.2.2 Event-Aware Systems 34

3.3 Constructions and Relaxations 35
3.3.1 Event-Aware Reductions 36
3.3.2 Event Renaming 36

4 Context-Restricted Constructions 39
4.1 Introduction . 39

4.1.1 Motivation . 39
4.1.2 Universal Computational Extractors 41
4.1.3 Indifferentiability 42
4.1.4 Contributions . 43
4.1.5 Related Work . 44

4.2 Context-Restricted Constructions 47
4.2.1 Modeling Context Restrictions 47
4.2.2 Composition . 48
4.2.3 The Relation to Regular Constructions 51
4.2.4 An Example: Diffie-Hellman Key Exchange . . . 52

4.3 UCE as a Special Case 54
4.3.1 Constructing Random Oracles 54
4.3.2 Non-Interactive Contexts 56
4.3.3 RO-CRI Security Implies UCE Security 57

4.4 Public-Seed PRPs as a Special Case 59
4.4.1 Public-Seed Pseudorandomness 59
4.4.2 Ideal Primitives and Function Families 60
4.4.3 CRI-Security Implies psPR-Security 61

4.5 Generalizing Split-Security 63
4.5.1 Split-Security . 63
4.5.2 An Alternative Representation 64
4.5.3 Strong-Split Security 66
4.5.4 Strict Min-Entropy Seeds 68
4.5.5 The Repeated Split-Source Context Set 70
4.5.6 The Relation Between ICE and Strong-Split RO-

CRI . 71
4.6 Split-Security of the Merkle-Damgård Construction . . . 73

4.6.1 Motivation . 73
4.6.2 Formalizing the Theorem 74

xv

4.6.3 Proof of Theorem 4.6.3 75
4.6.4 A Sufficient Condition Based on Min-Entropy

Splitting . 79

5 Overcoming the Commitment Problem 83
5.1 Introduction . 83

5.1.1 Motivation . 83
5.1.2 Contributions . 85
5.1.3 Related Work . 87
5.1.4 The Constructive Cryptography Setting 88

5.2 Interval-Wise Guarantees: Motivation and Intuition . . 88
5.2.1 A Motivating Example 88
5.2.2 A Naive Attempt 89
5.2.3 Our Solution . 92

5.3 Interval-Wise Guarantees: Definitions 94
5.3.1 Guarantees up to Some Point 95
5.3.2 Guarantees From Some Point On 98
5.3.3 The Interval-Wise Relaxation 101
5.3.4 The Resulting Construction Notion 104

5.4 Application to Commitment Schemes and Coin-Tossing 107
5.4.1 Perfectly Binding Commitments 107
5.4.2 Coin-Tossing . 111

5.5 Revisiting Composable Identity-Based Encryption . . . 115
5.5.1 Background and Motivation 115
5.5.2 The Real and Ideal Worlds 117
5.5.3 The Composable Statement 120

6 A Case Study: Secure Messaging 125
6.1 Introduction . 125

6.1.1 Motivation . 125
6.1.2 Contributions . 126
6.1.3 The Constructive Cryptography Setting 127

6.2 The Unified Composable Statement 128
6.2.1 The Approach 128
6.2.2 Our Channel Model 129
6.2.3 Memory and Randomness Resources 132

6.3 Unifying Ratcheting: Two Examples 135
6.3.1 A Simple Authentication Scheme 135

xvi Contents

6.3.2 Confidentiality from HIBE 140
6.4 Adaptive Security . 147

6.4.1 Overview . 148
6.4.2 Combining RNCE with HIBE 151

6.5 Asynchronous Ratcheting as Continuous Key Agreement 156

7 Conclusion 169

A Details of Chapter 4 171
A.1 Proof of Lemma 4.5.8 171

B Details of Chapter 5 177
B.1 Details of Section 5.3 . 177

B.1.1 Proof of Theorem 5.3.12 177
B.1.2 Proof of Theorem 5.3.16 179
B.1.3 Proof of Proposition 5.3.20 180

B.2 Details of Section 5.4 . 181
B.2.1 ElGamal Commitments 181
B.2.2 Coin-Tossing . 182

C Details of Chapter 6 187
C.1 Details of Section 6.3.1 187

C.1.1 Key-Updating Signatures 187
C.1.2 The Authentication Protocol 188
C.1.3 Proof of Theorem 6.3.1 188

C.2 Details of Section 6.3.2 194
C.2.1 The Sesqui-directional HIBE Protocol 194
C.2.2 Proof of Theorem 6.3.3 197

C.3 Details of Section 6.5 . 203
C.3.1 Simulator from Theorem 6.5.1 203

Chapter 1

Introduction

1.1 Motivation

The fundamental proposition of modern-day cryptography is being a
science rather than an art. A cornerstone thereof is designing provably
secure systems, rather than relying on heuristic arguments or even
hoping to achieve security by obscuring its functionality. Proving
a system to be secure, however, foremost requires a mathematical
definition of the desired security goals and a model of the system under
consideration. Furthermore, for the design and analysis of the system
to be rigorous, as with any scientific discipline, modularization is key.
First, modularization allows to build and understand systems that
would otherwise just be to complex to discern. Second, modularization
naturally allows for a separation of concerns and for the reuse of existing
solutions.

Several distinct approaches towards defining security have evolved
over the course of the last decades, with game-based security definitions
and composable security definitions being the two most prevalent ones.
While game-based security definitions are more prevalent, composable
security definitions offer a set of distinct advantages, such as a tight
linking to the security of the actual application and improved modular-
ization. Nevertheless, they also face a number of obstacles, with this
thesis aims at overcoming.

2 Chapter 1. Introduction

1.1.1 Game-Based Security Definitions

The majority of the security definitions in cryptography are so-called
game-based ones. To define the security of a primitive or scheme, one
thereby defines an experiment between an adversary (sometimes also
called challenger) and a security game that provides a certain well
defined interface for using the primitive to the adversary. The scheme
is then said to be secure if no efficient (for some notion of efficiency,
such as polynomial time) adversary can achieve a certain goal—called
winning the game—with non-negligible probability.

Game-based notions’ primary strength is their simplicity. Rather
than considering a real-world usage of the primitive with a potentially
complex interaction pattern, the security games strive to focus on the
essential parts required to guarantee security. As a consequence, they
are particularly suited to serve as a technical reference point, both for
designing schemes that provably satisfy the definition (based on some
assumptions), and for relying on any scheme that satisfies the definition
to building more involved ones.

The main drawback of game-based definitions, however, is the discon-
nection of the security definition from the actual use-case. That is, while
the design of a security game is commonly motivated by an application
story, their connection is typically only informally argued as part of the
exposition illustrating and justifying the definition. Nevertheless, it is
frequently assumed that a scheme satisfying the corresponding definition
then implies security in the intended application, despite the apparent
lack of scientific evidence thereof. Moreover, frequently several related
security definitions emerge, posing the question which one is the right
one for the application in mind. While the technical relations among
those definitions are usually studied, this does not settle whether in an
intended application the stronger definition is required or the weaker
one would suffice as well. For instance, if we can assume authenticated
communication and want to communicate confidential information, it is
not apparent whether IND-CCA or IND-CPA security represents the
correct reference point to aim for.

In addition, game-based security definitions do not compose by
default. Consider the example of designing a scheme for secure commu-
nication, i.e., one that provides both authenticity and confidentiality,
in a modular manner. For this, one needs a security definition for

1.1. Motivation 3

the authentication scheme, one for the encryption scheme, as well as
one for the overall scheme. It then needs to be explicitly proven—via
reductions—that breaking the overall scheme implies breaking one of the
underlying scheme. If glossed over, the scheme might even be insecure
despite each of its component being provably secure.

1.1.2 Composable Security Definitions
Composable security frameworks bridge the aforementioned gap be-
tween the technical security definitions and the actual use of a scheme
by taking a radically different—yet completely natural—approach to
defining security. Several such frameworks exists, such as the Universal
Composability (UC) framework by Canetti and its variants thereof
[Can01 ; CR03 ; CDPW07 ; HS15], the Reactive Simulatability (RSIM)
framework by Backes, Pfitzmann, and Waidner [PW01 ; BPW07], the
Constructive Cryptography (CC) framework by Maurer and Renner
[MR11 ; Mau11 ; MR16], and the IITM model by Küsters, Tuengerthal,
and Rausch [KTR13 ; CEK+16 ; CKKR19].

While these frameworks have been developed with different focuses
in mind and diverge on a technical level, on a high level they all follow
the real-world ideal-world paradigm for defining security. To this end,
they model an actual execution of the protocol in the real world. In
that model, the protocol makes use of certain assumed resources, such
as different types of communication channels and shared keys. This real-
world execution is then compared to an execution of an idealized resource,
asserting that they behave equally in any environment. Hence, the
protocol can be viewed as constructing the idealized resource, thus often
called constructed resource, from the assumed ones. Such a constructive
perspective puts cryptography on par with other engineering disciplines,
where posing the questions of which resources are needed to obtain the
desired product is commonplace.

The foremost advantage of composable security definitions is their
evident semantics. First, as composable security definitions consider all
environments, it is ensured that the constructed resource can truly be
used. For instance, if a key-exchange protocol constructs a key resource,
then this key can be safely used in any arbitrary application, such as
the one-time pad, which is surprisingly not always true when working
with game-based definitions. Second, they make the assumed resources

4 Chapter 1. Introduction

explicit as part of the security statement, rather than encoding them
implicitly as part of a security game. For instance, if a composable
statement about an encryption scheme assumes authenticated channels,
then this requirement on the scheme’s suitability is apparent and clearly
needs to be addressed in any usage. In contrast, in a game-based world
the imposed restrictions from a scheme only satisfying IND-CPA rather
than a stronger notion, such as IND-CCA, tend to be much less obvious.
Third, the constructed resource of a composable security statement
explicitly specifies the desired behavior and achieved security properties,
rather than listing excluded attacks as game-based security definitions
tend to do. For instance, in context of encryption the constructed
resource is typically a secure channel that specifies that the receiver gets
the correct message if the ciphertext is delivered (correctness), that the
adversary learns at most the length of the messages (confidentiality),
and the the adversary can at most drop, deliver, or reorder messages
(authenticity). Given such a constructed resource, it is self-evident that
the message length might leak.

A second key advantage of composable security frameworks is, that
they inherently foster modularity and abstraction. Both of those as-
pects are widely recognized to be crucial for designing and analyzing
complex systems—across all engineering disciplines well beyond cryptog-
raphy. Composable frameworks are based around defining components
with clean abstraction boundaries (e.g., a secure channel) that abstract
away the details of how that module has been constructed or otherwise
obtained. This idealized module can then be used by a higher-level
protocol with the security of the combined overall protocol following
directly from the composition theorem. Given that composable frame-
works enforce a uniform type of statement, that moreover not only
makes the analysis of a complex protocol modular, but also enables the
sub-protocols to be reused as building blocks for other protocols. This
directly calls for a library of such construction statements as a main
objective for cryptography.

Constructive Cryptography

In this thesis, we build on the Constructive Cryptography (CC) frame-
work by Maurer and Renner [MR11 ; Mau11]. Compared to other
composable frameworks, it provides two major advantages.

1.1. Motivation 5

First, it is built around the paradigm of top-down abstraction,
in contrast to other frameworks that are defined bottom-up from a
concrete computational model. Using top-down abstraction allows
treating each statement at the right level of abstraction. As irrelevant
aspects are abstracted away, this leads to cleaner descriptions and
minimal proofs that avoid unnecessary technicalities. In this thesis,
we mainly work on the abstraction layer of the input-output behavior
of concrete systems. In the corresponding abstraction level of CC,
this behavior is the mathematical object under consideration, rather
than a property of a concrete computational object. In particular,
this implies that our statement are valid independent of the actual
implementation of the systems. Moreover, the abstract approach of
CC does not hard-code an efficiency notion—forgoing it for explicit
statements entailing reductions. Hence, it avoids being restricted to
asymptotic statements that do not reflect real-world use of the protocol
with concrete parameters.

Second, Constructive Cryptography brings the natural idea of speci-
fications to the realm of cryptography. Considering specifications, i.e.,
sets of objects, and abstracting them by larger sets that are easier to
understand is a widely used approach to make composable statements
outside cryptography. In particular, in such an approach composition is
just the transitivity of the subset relation: if one set R can be abstracted
by S, i.e., R ⊆ S, and as another statement one shows S ⊆ T , then
R ⊆ T is directly guaranteed. This stands in stark contrast to the
traditional, and rather technical, composition theorems of most other
composable frameworks.

Obstacles for their Adaption

The way composable security frameworks provide readily understandable
security guarantees and foster modularity, might make them look like
the only viable approach to a rigorous and sound design of cryptographic
applications. Nevertheless, they have not seen wide-spread adaption
and are often even met with some skepticism.

In general, the tightly restricted type of statements they enforce have
proven to be both a blessing and a curse. First, the imposed abstraction
boundaries lack flexibility. This impedes modularity, since it prevents
certain resources from being properly decomposed. Moreover, some

6 Chapter 1. Introduction

popular abstraction boundaries, such as the random oracle, are known
to be impossible to construct from resources readily available in the real
world; in particular, instantiating them with hash functions is provably
unsound. Nevertheless, the random oracle paradigm seemingly leads to
secure protocols in practice, indicating that the random oracle resource
is not the correct abstraction boundary. This raises the question about
more amenable abstraction boundaries that preserve (most of) the
benefits of composable security frameworks.

Second, reusability is often hindered by enforcing overly specific
statements. In particular, a traditional composable statement is gen-
erally phrased as the resource constructed when assuming that the
protocols makes use of a particular resource. This, however, implies
that whenever the protocol is used in a setting where an even slightly
different resource is available, than the one from the security proof, then
the statement no longer applies. This raises the question how one can
phrase statements that do not unnecessarily hard-code a fixed assumed
resource, but rather describe what the protocol achieves when run in
an arbitrary context, without greatly complicating the analysis.

Third, composable security definitions are met with some skepticism
because of many impossibility results; goals such as commitments and
zero-knowledge that are achievable in a stand-alone sense were shown
to be unachievable composably (without a setup) since provably no
efficient simulator exists. In particular, in the context of adaptive
security, the so-called “simulator commitment problem” arises: once a
party gets corrupted, an efficient simulator is unable to be consistent
with its pre-corruption outputs. A natural question is whether such
impossibility results are unavoidable or only artifacts of frameworks
being overly restrictive.

1.2 Overview and Contributions
This thesis makes both conceptual and technical contributions to the
definitional aspects of cryptography. This includes several extensions
to the Constructive Cryptography framework to address the aforemen-
tioned obstacles of composable security definitions. In the following,
we summarize the main contributions and give pointers to the relevant
papers they are based on.

1.2. Overview and Contributions 7

1.2.1 Advancing Composable Security

Constructive Cryptography with Events

In Chapter 3 , we propose the extension of the Constructive Cryptogra-
phy framework by so-called global event histories, to enable more flexible
abstraction boundaries. In particular, we tackle the problem that in
many cryptographic systems or protocols the behaviors of components
are subtly intertwined. For example, a channel (one module) can become
insecure when a key (another, apparently independent module) is leaked
to the adversary. In the standard system model of Constructive Cryp-
tography (and most other composable frameworks), all resources are
however by definition fully independent. The only way for two resources
to interact is via explicit communication through the protocol or the
environment. While having such a clear and well-defined abstraction
boundary is crucial for modularity, the traditional system model implies
that seemingly natural modules (e.g., the channel and the key from
the previous example) cannot be modeled as separate components, but
have to be modeled as a monolithic resource. In summary, the existing
system model frequently impedes modularization, and thus reuse, by
being to coarse grained.

As a solution, we propose to enhance the abstraction boundary
by global events. That is, in addition to the traditional input-output
behavior, each resource can trigger events from a predefined set. In
the new system model we propose, those events are globally observable.
Namely, other resources can then depend on the global event history, i.e.,
on which events having occurred so far and in which order. For instance,
the key resource can then export the event of having been leaked, on
which the behavior of the channel can then depend on, without this
information having to be somehow routed via some wrapper. Global
events, therefore, allow extending the abstraction boundary in a fine-
grained fashion, with the designer of the resource choosing which events
are exported as part of the abstraction interface, greatly enhancing the
flexibility of the resource paradigm. Since Constructive Cryptography
is build around top-down abstraction, this novel system implementation
furthermore inherits all the properties proven on the more abstract
layers.

The results in that chapter are based on the publication [JMM19b].

8 Chapter 1. Introduction

Context-Restricted Constructions

In Chapter 4 , we propose the notion of context-restricted constructions.
Context-restricted constructions allow us to model that certain resources
do not compose generally, i.e., cannot be used in any arbitrary context.
To this end, context-restricted constructions treat the admissible con-
texts as an explicit parameter of the security statement, making the
remaining composition guarantees explicit. A context thereby restricts
the honest parties’ use of the resource, i.e., specifies a set of protocols
for which it is safe to use the resource. It, however, never restricts
the adversary and, hence, preserves the clean semantics of composable
security statements. In summary, a context-restricted construction
guarantees that when used by the honest party in one of the explicitly
specified manners, the protocol does construct the ideal resource with
all its guarantees, even in the presence of an arbitrary adversary.

Such a notion with explicitly limited composition guarantees is
particularly useful when dealing with abstractions such as a random
oracle, where no weaker and feasible to instantiate, yet useful abstraction
boundary are known. As an application, we then show that the notion
of universal computational extractors (UCE), introduced by Bellare et
al. [BHK13b] as an alternative to the ROM, can be understood as a
special case of context-restricted constructions about random oracles.
UCE is multi-stage game-based notion, aimed at formalizing classes
of applications for which the ROM paradigm might be sound. To
this end, UCE is a parametrized notion, where each so-called UCE
family specifies a set of admissible split-adversaries. We show a generic
transformation from UCE families to context restrictions, thereby giving
the multi-stage UCE game clear composable semantics. Furthermore,
taking the viewpoint of general context-restricted constructions directly
leads to consider natural context restrictions that cannot be phrased
within the traditional UCE game. Finally, we prove a technical result
about the Merkle-Damgård construction. Namely, we show that if the
compression function satisfies one of our generalizations of UCE (for
which no impossibility result is known), then the overall construction
satisfies one of the of the well-known UCE variants. Thus, using our
novel notion we further validate the Merkle-Damgård construction,
being able to base the overall security on a plausible assumption.

The results in that chapter are based on the publication [JM18].

1.2. Overview and Contributions 9

Overcoming the Commitment Problem

In Chapter 5 we revisit the so-called simulator commitment problem,
that mainly occurs in the context of adaptive security. Since the
commitment problem usually occurs at a very specific point of the
protocol execution, such as when a party gets corrupted, we propose
a novel construction notion centered around the very natural idea of
formalizing guarantees that hold in a certain interval (between two
events), yet compose. To this end, we leverage that the Constructive
Cryptography framework’s specification-based approach, where proving
a protocol π to be secure corresponds to modeling the assumed real-
world specification R, and showing that the resulting specification πR
is contained in an ideal-world specification S. While most composable
frameworks only consider a single type of specifications based round
the existence of a simulator, we use the additional flexibility of CC to
consider specifications formalizing interval-wise guarantees. We develop
the required theory, carefully considering the subtleties arising when
defining such specifications, and present the corresponding composition
theorem. Moreover, we discuss our notion’s security guarantees should
be interpreted, when stronger notions might still be desirable, and how
our notion fits into the space of static versus adaptive security.

We then apply our methodology to several examples. First, we con-
sider the encrypt-then-MAC paradigm in a setting where the keys can
adaptively leak to the adversary, stylizing adaptive passive corruptions.
Using our interval-wise guarantees, we obtain a simple composable
security definition thereof without the need for non-committing encryp-
tion. As a second application, we present a composable formalization
of information-theoretically binding commitment schemes realizable in
the plain model. We then show how, based on such a commitment
scheme, Blum’s protocol [Blu83] constructs a composable coin-toss
notion. Finally, we consider the composable guarantees of identity-
based encryption. We revisit the result by Hofheinz, Matt, and Maurer
[HMM15] that shows the standard ind-id-cpa notion to be too weak
when considering a traditional composable statement, even when con-
sidering static corruptions, due to the commitment problem. Based on
interval-wise guarantees we formalize a composable specification of IBE
that corresponds exactly to the standard ind-id-cpa notion.

A preprint of the results in that chapter is available in [JM20].

10 Chapter 1. Introduction

1.2.2 A Case Study: Secure Messaging

In Chapter 6 , we study security definitions for secure messaging. Secure-
messaging protocols aim at providing strong security guarantees to two
parties that asynchronously communicate over an insecure network.
Apart from protecting the messages’ confidentiality and integrity, the
desired properties include forward secrecy and healing from a state or
randomness exposure. The latter properties are addressed by having
the parties continuously update their keying material.

Secure messaging has attracted a fair bit of attention from the
cryptographic community, initiated by the first formal analysis of the
widely-used Signal protocol [OWS17] by Cohn-Gordon et al. [CCD+17].
Influence by the Signal protocol, a number of other secure messaging
protocols with stronger guarantees [Poe18 ; JS18 ; DV18 ; JMM19a] have
been proposed. Furthermore, a line of work considers continuous key-
agreement as an abstraction of the Signal protocol, proposing and
analyzing various protocols [BSJ+17 ; Poe18 ; ACD19] with different
levels of security. The majority of the proposed protocols pursue similar
goals, but each achieves a slightly different trade-off between security,
efficiency and usability. Moreover, each construction comes with its
own—fairly complex—security game, intermediate abstractions, and
sub-protocols. In particular, the security game of each sub-protocol is
typically co-designed with the overall protocol and implicitly encodes
the security guarantees provided by other sub-protocols. This not only
renders them hard to compare, but additionally prevents achieving new
trade-offs that would result from combining sub-protocols from different
works without reproving their security.

In this thesis, we thus pursue to initiate the build of a library of
composable and reusable statements in lieu of tailor-made security
games. First, we demonstrate the applicability of global events to this
task. Secure messaging protocols typically have a plenty of intra-module
dependencies, as for instance, the confidentiality of a message typically
depends on whether and when a party’s state leaked and other messages
being sent and delivered. Constructive Cryptography with global events,
thus, aids modularization, as it allows us to model the relevant depen-
dencies as events, while abstracting other implementation details. The
notion of global events also provide a solution to the problem of overly
specific statements in the context of secure messaging. To this end,

1.3. Related Work 11

we parameterize the resources by several (discrete) parameters, which
can be thought of as a switch with two or more positions, that depend
on the global event history. Each such switch thereby downgrades the
security of a resource, e.g. switch a channel from non-leakable (i.e.
confidential) to leakable. The goal of (sub-)protocol is then phrased
as improving a certain parameter while leaving the other parameters
unchanged, independently of what they are, avoiding hard-coding of
any unnecessary assumptions.

Finally, as one considers adaptive state exposure, secure messaging is
prone to the simulator commitment problem. We thus formalize several
of our statements using interval-wise guarantees. In addition, we also
introduce a novel protocol that avoids the commitment problem, and
thus satisfies an even stronger specification, using non-committing In
addition, we propose a technique that allows to transform many standard
SM protocols into protocols that avoid the commitment problem and,
thus, satisfies an even stronger specification. This however comes at the
expense of an efficiency lost, as well as being restricted to only sending
a bounded number of messages before receiving a reply from the other
party, further demonstrating the utility of being able to making weaker
statements using interval-wise guarantees.

The results in that chapter are based on the publication [JMM19b].

1.3 Related Work
A number of approaches have been proposed in order to overcome
various limitations of composable security definitions. This thesis is
divided in chapters that tackle different shortcomings of the standard
composable security frameworks. As a consequence, we provide the
relevant related work in the respective chapters. The bibliography can
be found at the end of the thesis.

Chapter 2

Preliminaries

2.1 Notation

2.1.1 General Notation and Information Theory

We denote the set of natural numbers by N = {1, 2, . . .}, and the set
of integers by Z. For n ∈ N, we use the convention [n] := {1, ..., n}.
For a family of sets Xi, i ∈ I, we denote by

⋃· i∈I Xi the disjoint union.
Finally, 〈Xi〉i∈I denotes the tuple that assigns Xi to the index i ∈ I

The probability of an event A in an experiment E is denoted by
PrE [A]. If the experiment is clear from the context, we omit the
superscript. For a discrete random variable X distributed over a car-
rier set X , we denote by PX the probability mass function of X, i.e.,
PX(x) := Pr[X = x]. The conditional probability of A given B is
denoted Pr[A | B] and for discrete random variables X and Z, the
conditional probability distribution of X given Z is the partial function
PX|Y (x, y) := Pr[X = x | Y = y].

The expected value of a random variable X is denoted by E[X]. We
denote the entropy of a discrete random variable X distributed over
X as H(X) := −

∑
x∈X PX(x) log2(PX(x)). Moreover, we denote by

H∞(X) := − log2(maxx∈X PX(x)) the min-entropy of X. Finally, we
denote by H̃∞(X) the average min-entropy of X given Z, defined as
H̃∞(X |Z) := − log2(Ez∈Z [maxx∈X PX|Z(x, z)]).

14 Chapter 2. Preliminaries

2.1.2 Pseudo-Code for Algorithms and Systems
We describe algorithms and systems using pseudo-code. The following
conventions are followed: We write x← y for assigning the value y to
the variable x. For a finite set X , x� X denotes assigning x uniformly
at random a value in X . Furthermore, x

PX
� X denotes sampling x

according to the indicated probability distribution PX over X .
To describe reactive discrete systems, such as resources, we adhere

to the following conventions: Each system has one or several interfaces
to interact with, and an initialization procedure initializing all the
persistent variables (all other variables are understood to be volatile).
Formally this initialization is called upon querying the system at any
interface for the first time. Typically queries, also called inputs, to
an interface of a systems consist of a suggestive keyword and a list
of arguments, such as for a channel the input (send,m) to send a
message m. We ignore keywords in writing the domains of arguments,
e.g., (send,m) ∈ M indicates that m ∈ M. Furthermore, we use
the require command, which should be understood as a shortcut for
explicitly tracking the respective condition and returning an error symbol
⊥ in case the condition is violated. Finally, we use the syntax “call y ←
(kwd, x) at interface I of R” to denote that the system queries (kwd, x)
at the interface I of another system R and stores the returned value in
the variable y.

See also Section 2.2.6 for an additional introduction of some of the
conventions used, by the means of an example.

2.2 Constructive Cryptography
This thesis is centered around composable security notions. There
are several frameworks formalizing composable security, sometimes also
called simulation-based security, such as [Can01 ; PW01 ; BPW07 ; MR11].
While they share many common aspects, and most of the ideas proposed
in this thesis could potentially be translated among the frameworks, our
presentation is focused here solely on the Constructive Cryptography
framework [MR11 ; Mau11 ; MR16]. The Constructive Cryptography
framework is built around constructions of resource specifications (from
other resource specifications). A specification is thereby simply a set of

2.2. Constructive Cryptography 15

objects called resources. Each resource, such as communication channels
or computational resources, is accessible to one or more parties, and
presents a mathematical abstraction of an object either found in the
physical world or obtained via the means of a construction.

The Constructive Cryptography framework is a general theory that
expands beyond cryptography and consists of several abstraction layers
in a top-down fashion. The purpose of this section is to describe the
aspects of Constructive Cryptography relevant for this work, thereby
mainly staying at the abstraction level of probabilistic discrete systems
and focusing on its applicability on cryptography. We refer to [MR11 ;
MR16] for a detailed presentation of the higher axiomatic abstraction
layers and its reach beyond cryptography.

2.2.1 Specifications.

A general paradigm in science and engineering is the concept of a
specification. A specification thereby captures certain assumed or desired
properties of a system. Following [MR16], we model specifications as
sets of objects R ⊆ Θ, where Θ denotes some basic set of objects under
consideration. For each property one has in mind, one can consider
the set R of objects satisfying that property. Vice versa, each set of
objects R can be interpreted as the set of properties common to all
elements. A concrete object X can then either satisfy the specification,
i.e., X ∈ R, or not. For instance, one might consider the set of all
programs and the specification of all programs R exhibiting a certain
input-output behavior. Functional correctness of a program P then
corresponds to P ∈ R. In cryptography, one might consider the set of
all communication channels and model authenticity as the set of all
communication channels that guarantee the correct messages (or no
message at all) to be delivered.

An fundamental concept is then principle of abstracting a specifica-
tion R by another one S, i.e., R ⊆ S. In other words, S waives some
of the (irrelevant) guarantees of R in favor of a less complex and more
useful one. For instance, R might be a specification of communication
channels that precisely models the capabilities of the various parties,
while S might specify authenticity only, ignoring other aspects not
relevant for the further analysis.

16 Chapter 2. Preliminaries

2.2.2 The System Algebra
At its heart, the Constructive Cryptography framework views cryptog-
raphy as a resource theory with each specification being of a set of
resources. Resources are part of a system algebra consisting of resources
and converters that can be combined to form new systems, adhering cer-
tain natural algebraic rules. In this thesis, we focus on the abstraction
layer of discrete probabilistic systems, defined by their input-output
behavior.

Resources

The central object in Constructive Cryptography is that of a resource. A
resource R is a reactive discrete system that has one or several interfaces,
each assigned to a party. For instance, a communication channel might
have a sender’s interface at which a message can be input, a receiver’s
interface at which it can be read afterwards, and an adversarial interface
at which some leakage might be obtained. More generally, for each
party P ∈ P, the resource R has a set of interfaces IP via which it
interacts with the environment in the following way: The environment
can repeatedly input queries x at one of the interfaces, to obtain the
corresponding response y at the same interface. This reply y can thereby
(probabilistically) depend on all previous inputs and outputs. Formally,
a resource for parties P with interface sets 〈IP 〉P∈P and input and
output alphabet X is a special type of a random system [Mau02], where
the interface address is encoded as part of the inputs.

Definition 2.2.1. Let X denote a countable alphabet, let P denote a
finite set of parties, and let 〈IP 〉P∈P denote a tuple of finite interface sets.
Moreover, let I :=

⋃·P∈P IP . A probabilistic (X ,P, 〈IP 〉P∈P)-resource
S is a sequence of partial conditional probability distributions〈

PS
Yi|XiY i−1 :

(
X × (I × X)i ×X i−1)→ [0, 1]

〉
i≥1,

such that PS
Yi|XiY i−1(yi;xi, yi−1) is defined if and only if

i−1∏
j=1

PS
Yj |XjY j−1(yj ;xj , yj−1) > 0,

i.e., when not conditioning on an impossible history.

2.2. Constructive Cryptography 17

A finite set of resources with disjoint interface sets can be viewed as
a single one that provides each party access to the corresponding inter-
faces of all subsystems. That is, consider (X ,P, 〈IP,i〉P∈P)-resources
Ri, for i ∈ [n], such that IP,i ∩ IP,j = ∅, for all j 6= i and P ∈ P.
Then, we denote by [R1, . . . ,Rn] the parallel composition, which is a(
X ,P, 〈

⋃
i∈[n] IP,i〉P∈P

)
-resource.

We furthermore denote by � the (canonical) dummy resource, where
every party has an empty interface set. By definition, we thus have that
[R,�] = R for all resources R.

Converters and Protocols

A party can use a resource R by applying a converter at its interfaces.
Such a converter can be thought of a protocol engine. The guiding
principle of Constructive Cryptography is, thereby, that everything
is considered to be relevant for an analysis is modeled as a resource.
In contrast, everything modeled as part of the converter is defined to
be intentionally ignored for the sake of the analysis. For instance, in
cryptography one often chooses to neglect the exact computational cost
of a certain operation as long as it is “efficient”, where efficiency is
then traditionally defined as the asymptotic notion (in some security
parameter) of polynomial time. In this work, we mainly avoid the
delicate task of choosing the class of converters under consideration by
making all converters explicit.

On an abstract level, attaching a converter to a set of interfaces
of a resource yields a new resource, i.e., converts the resource. As
with resources, we focus on the more concrete layer of discrete systems
here and define converters accordingly. A converter π is modeled as
a probabilistic discrete system with two sets of interfaces: the inner
interfaces Iin and the outer interfaces Iout. Upon an input at an outside
interface, the converter is allowed to make a bounded number of queries
to the inside interfaces (recall that a resource always returns at the
same interface it was queried), before returning a value at the queried
interface.

Definition 2.2.2. A (X , Iin, Iout)-converter is a system whose input
alphabet at the beginning is X×Iout. Upon an input (x, I), the converter
produces an output, either from (y, I ′) ∈ X ×Iin (interpreted as input y

18 Chapter 2. Preliminaries

for the corresponding interface of the system connected at the inside) or
of the from y ∈ X (interpreted to be the response at I). After an output
of the form (y, I), the converter takes an input x′ ∈ X (interpreted as
the response from the connected resource), and after an output of the
form y, the converter takes another input from X × Iout, i.e., from the
outside. There is a finite upper bound on the number of consecutive
outputs of the form (y, I ′) ∈ X × Iin.

Converters can be attached to a resource in order to modify the
behavior of the resource. More specifically, for a (X ,P, 〈IP 〉P∈P)-
resource R and a (X , Iin, Iout)-converter π, let γP : Iin ↪→ IP be an
injective function, such that (IP \ img(γ)) ∩ Iout = ∅, describing the
connections between the converter’s inside interfaces and a subset of
the resource’s interfaces. Then, R′ := πγR denotes the (X ,P, 〈IP 〉′P∈P)-
resource, where I ′P = IP \ img(γ) ∪ Iout and I ′Q = IQ for Q 6= P ,
obtained from connecting the converter accordingly.

Converter attachment satisfies the natural property of composition
order independence, stating that on the term algebra level the composi-
tion order does not matter—only the final system. This is summarized
by the following proposition.

Proposition 2.2.3. Let P and Q be two different parties, let πP and
πQ be two converters, and let R be a resource. Then for any suitable
γP and γQ we have

πγPP π
γQ
Q R = π

γQ
Q πγPP R.

Moreover, if S is another resource such that the interface sets of R and
S are disjoint, then we have

πγPP
[
R,S

]
=
[
πγPP R,S

]
.

We define a protocol to be a (partial) tuple of converter-connection
pairs. That is, for a subset of parties Q ⊆ P, let π := 〈(πP , γP)〉P∈Q,
and write πR := π

γP1
P1
· · ·πγPnPn

R, where n = |Q|, to denote its application.
(By composition order independence it is irrelevant in which order the
converters are attached.) For two protocols π and π′, we denote
by π′ ◦ π their sequential composition, i.e., the protocol for which
(π′ ◦ π)R = π′(πR) for any resource R. Moreover, we denote by id the
identity protocol, for which idR = R, for any resource R.

2.2. Constructive Cryptography 19

2.2.3 The Construction Notion
While the concept of abstracting specifications R by another one S
is a fundamental principle of many scientific fields, in cryptography
one is usually interested in the more concrete aspects of constructions
or constructability. That is, given some assumed specification R, is
there a protocol π that constructs S from R, in short πR ⊆ S? Hence,
the Constructive Cryptography framework introduces the following
construction notion as a shorthand notation.

Definition 2.2.4. Let R and S be arbitrary specifications, and let π
be an arbitrary protocol for R. Then, we say that π constructs S from
R, denoted R π−−−→ S, if and only if πR ⊆ S, i.e.,

R π−−−→ S :⇐⇒ πR ⊆ S.

This construction notion is associated with the usual composi-
tion properties of Constructive Cryptography: sequential and parallel
composition—which form the equivalence of the universal composition
theorem of the UC-framework.

Theorem 2.2.5. Let R, S, and T be arbitrary specifications, and let π
and π′ be arbitrary protocols for R and S, respectively. Then, we have

1. R π−−−→ S ∧ S π′−−−→ T =⇒ R π′◦π−−−−→ T ,

2. R π−−−→ S =⇒
[
R, T

] π−−−→
[
S, T

]
.

Proof. The first property follows directly from the transitivity of the
subset relation, π′

(
πR
)
⊆ π′S ⊆ T , and the second property follows

from Proposition 2.2.3 : π
[
R, T

]
=
[
πR, T

]
⊆
[
S, T

]
.

The construction notion, furthermore, can be seen as a generaliza-
tion of the so-called real-world / ideal-world paradigm used in most
composable security frameworks [Can01 ; PW01 ; MR11 ; KTR13]. To
this end, πR can be understood as a mathematical model of a real-
world execution of a protocol, that use some assumed resources, while
S can be seen as an ideal world giving the desired security properties
by definition. Following the paradigm, the construction statement then

20 Chapter 2. Preliminaries

affirm that the real word is “just-as-good” as the ideal world, meaning
that for all parties, no matter whether honest or adversarial, it does
not make a difference whether they live in the real (where an arbitrary
element of πR is present), or in the ideal world (where some element
of S is present). Hence, if the honest parties are content with the
guarantees they get from the ideal specification, they can safely execute
the protocol in the real world instead.

2.2.4 Relaxations
While many composable frameworks hard-code a particular computa-
tional model and security flavor—e.g., computational security with negli-
gible distinguishing advantage for all polynomial time environments—the
construction notion of CC, on the other hand, is absolute. It does not
require the choice of a particular computational model, an (asymptotic)
efficiency notion, a particular type of indistinguishability (computational
versus statistical), or even the existence of a simulator. Those aspects
are formalized by so-called relaxations, as introduced in [MR16]. Treat-
ing relaxations as orthogonal to the basic construction notion allows
the framework to consider different security notions within the same
overall framework and, more generally, enables more flexible security
statements.

On an abstract level, a relaxation is a mapping from specifications
to weaker, so-called relaxed, specifications. For our purpose, where we
instantiate specifications by sets of resources, we can define a relaxation
as a function mapping a single resource to a set of resources.

Definition 2.2.6. Let Θ denote the set of all resources. A relaxation
φ is a function φ : Θ→ 2Θ (where 2Θ denotes the power set of Θ) such
that R ∈ φ(R) for all R ∈ Θ. In addition, for a specification R, we define
Rφ :=

⋃
R∈R φ(R) as a shorthand notation.

A concrete relaxation thereby formalizes some notion of resources
being “almost-as-good” in some context. That is, if one was happy
with constructing a resource specification S, then one should also be
happy with Sφ, if φ is believed to be justifiable in the given context.
For instance, one could consider the relaxation that maps the resource
R to the set of all computationally indistinguishable resources from
R under some computational assumption. Then, if we consider the

2.2. Constructive Cryptography 21

ideal specification modeling a secure channel, its relaxation consists of
the set of all systems indistinguishable from a secure channel. Thus,
showing that the real-world system is contained therein, asserts that
it behaves like a secure channel unless the computational assumption
is broken. Hence, if one believes the computational assumption to be
valid, one should be as content with the relaxed specification as with
secure channel.

In the spirit of abstracting away irrelevant properties as a core
paradigm of any modular analysis, relaxations can be “ignored” in a
sequence of construction steps. That is, if one shows that one protocol
constructs Sφ (from some assumed resources), one can compose it
with another statements that assumes S instead, and later reapply the
relaxation. On the most abstract level, this follows from the following
rules applying to any relaxation.

Proposition 2.2.7. For any specifications R and S, and any relaxation
φ, we have

1. R ⊆ Rφ,

2. R ⊆ S =⇒ Rφ ⊆ Sφ,

3. (R∩ S)φ ⊆ Rφ ∩ Sφ,

4. (R∪ S)φ = Rφ ∪ Sφ.

Proof. All properties follow directly from basic set theory and the fact
that by definition R ∈ φ(R).

The reduction relaxation.

The most important relaxation for this thesis captures computational
security based on explicit reductions. To this end, we consider distin-
guishers. A distinguisher D for resources with interfaces I is a system
that can be attached to them with one additional interface, where it
outputs a single bit after interacting with the resource.

Definition 2.2.8. The distinguishing advantage of a distinguisher D
for resources R and S (both of them having the same interface set) is
defined as

∆D(R, S
)

:= Pr
[
D(S) = 1

]
− Pr

[
D(R) = 1

]
,

22 Chapter 2. Preliminaries

where D(R) denotes the random variable of the distinguisher’s output
when interacting with R.

The reduction relaxation is then formalized based on a function ε that
maps distinguishers to their respective performance in [0, 1], where ε(D)
typically refers to the winning probability of a modified distinguisher
D′ (the reduction) on the underlying computational problem.
Definition 2.2.9. Let ε be a function that maps distinguishers to a
value in [0, 1]. Then, the induced relaxation on a resource R, denoted
Rε, is defined as

Rε :=
{

S
∣∣ ∀D : |∆D(R,S)| ≤ ε(D)

}
.

We call such a relaxation generally an ε-relaxation or reduction relax-
ation.

The ε-relaxation satisfies several natural properties, such as the
errors just adding up as expressed by the following theorem.
Theorem 2.2.10. Let R be an arbitrary specification, and let ε1 and
ε2 be arbitrary ε-relaxations. Then we have

(
Rε1

)ε2 ⊆ Rε1+ε2 .
Proof. This follows directly from the triangle inequality of the distin-
guishing advantage.

Moreover, they naturally commute with protocol application and
parallel composition of additional resources, i.e., the relaxation can
be “pulled out”. In such a step, however, the additional resource or
converter has to be explicitly accounted for in the reduction.
Theorem 2.2.11. The ε-relaxation is compatible with protocol appli-
cation in the following sense:

π (Rε) ⊆ (πR)επ ,

for επ(D) := ε(Dπ(·)), where Dπ(·) denotes the distinguisher that first
attaches π to the given resource and then executes D. Moreover, the
ε-relaxation is compatible with parallel composition, i.e.,[

Rε,S
]
⊆ [R,S]εS ,

for εS(D) := supS∈S ε(D[· ,S]), where D[· ,S] denotes the distinguisher
that emulates S in parallel to the given resource and then lets D interact
with them.

2.2. Constructive Cryptography 23

Proof. Let S ∈ π (Rε) be arbitrary. Then, by definition, there exists
a T ∈ Rε such that S = πT. Observe that T ∈ Rε directly implies
|∆D(R,S)| ≤ ε, and thus

|∆D(πR,S)| = |∆D(πR,πT)| = |∆Dπ(·)(R,T)| ≤ ε(Dπ(·)) = επ(D),

implying S ∈ (πR)επ , i.e., compatibility with protocol application.
Now, let U ∈

[
Rε,S

]
be arbitrary. Then, by definition there exists

V ∈ Rε and S ∈ S such that U = [V,S]. Moreover, by definition there
exists R ∈ R such that |∆D(R,V)| ≤ ε. As a consequence we obtain

|∆D([R,S],U)| = |∆D([R,S], [V,S]| = |∆D[· ,V](R,V)|
≤ ε(D[· ,V]) ≤ εS(D),

and thus U ∈ [R,S]εS , concluding the proof.

2.2.5 Two Important Special Cases
Simulation-based security. In many cases, one considers construc-
tions where the ideal specification exhibits a specific structure. First,
most specifications considered in this thesis involve a so-called simulator
σ. That is, a protocol attached to the interfaces controlled by the
adversary that “translates” the attacks from the real-world adversary
to the ideal world such that they achieve the same effect. Expressing
the specification σS in such a decomposed manner is often beneficial as
it makes the achieved security properties obvious and abstracts away
other details. For instance, the specification of confidential channels
can then be written as the specification S of channels that only leak
the message length, combined with an arbitrary simulator (from some
set of simulators under consideration). From this description it is then
immediately apparent that for any resource in the combined specifica-
tion σS the adversary does not learn more about the message than the
length.

Second, for most parts of this thesis we are also interested in compu-
tational security, i.e., consider an ideal specification with an ε-relaxation
applied. In short, we primarily focus on specifications of the form (σS)ε,
combining those two aspects. As a result, we introduce the following
short-hand notation.

24 Chapter 2. Preliminaries

Definition 2.2.12. Let R and S be arbitrary specifications, let π be
an arbitrary protocol for R, σ an arbitrary simulator for S, and let ε be
a function that maps distinguishers to a value in [0, 1]. Then, we define

R π,σ,ε−−−−→
sim
S :⇐⇒ πR ⊆ (σS)ε,

and say that the protocol π constructs S from R within ε and with
respect to the simulator σ.

For this special type of constructions, the following composition
theorem can be derived.

Corollary 2.2.13. For any specifications R, S, and T , any protocols
π and π′, any simulators σ and σ′, and any ε-relaxation ε and ε′, we
have

1. R π,σ,ε−−−−→
sim
S ∧ S π′,σ′,ε′−−−−−−→

sim
T =⇒ R π′◦π,σ◦σ′,ε′σ+επ′−−−−−−−−−−−−−→

sim
T ,

2. R π,σ,ε−−−−→
sim
S =⇒ [R, T] π,σ,εT−−−−−−→

sim
[S, T],

where επ′ , ε′σ and εT are defined as in Theorem 2.2.11 , respectively.

Proof. For the first property, observe that

π′ (σS)ε ⊆ (π′σS)επ′ = (σπ′S)επ′ ⊆
(
σ(σ′T)ε

′
)επ′

⊆
(

(σσ′T)ε
′
σ

)επ′

⊆ (σσ′T)ε
′
σ+επ′

where the first step follows from Theorem 2.2.11 , the second step from
composition-order invariance, the third step from the assumption and
Proposition 2.2.7 , the fourth step from Theorem 2.2.11 , and the final
step from Theorem 2.2.10 . Using that specification containment is
preserved under protocol application, i.e.,

(π′ ◦ π)R = π′(πR) ⊆ π′(σ)ε,

then directly implies the desired result.
For the second property, we have

π
[
R, T

]
=
[
πR, T

]
⊆
[
(σS)ε, T

]
⊆ [σS, T]εT =

(
σ[S, T]

)εT
,

where the third step follows from Theorem 2.2.11 .

2.2. Constructive Cryptography 25

Asymptotic security. Generally, concrete security treatments ex-
hibit many advantages over asymptotic definitions. Nevertheless—for
instance when comparing to existing asymptotic notions—it may be
convenient to explicitly consider an asymptotic construction notion.

In the following, it is assumed that some computational model
and corresponding efficiency and negligibility notions are fixed. For
instance, when comparing against traditional game-based notions, one
usually considers Turing machines with the polynomial-time being the
efficiency notion. An algorithm A is then said to be efficient if it runs
in probabilistic polynomial time (PPT), i.e., A has access to random
bits and there is a polynomial p such that A(x) terminates after at
most p(|x|) steps for all inputs x. Conversely, a function f is said to
be negligible if for every polynomial p, there exists n0 ∈ N such that
f(n) < 1

p(n) for all n ≥ n0.
The system model of Constructive Cryptography, including re-

sources and converters, and the construction notion are inherently
non-asymptotic. Nevertheless, asymptotic statements can be obtained
by considering asymptotic families of resources 〈Rλ〉λ∈N. Considering
such families, the asymptotic notions of efficiency and negligibility can
be naturally adapted.

Definition 2.2.14. Let 〈Rλ〉λ∈N be a family of resources indexed by
the security parameter λ. We say that 〈Rλ〉λ∈N is efficient, if there
exists a uniform PPT (taking 1λ as input) that implements it, and
denote by Θpoly the set of all such resource families. The notions of
efficient protocols and distinguishers are defined analogously.

For a set of efficient resource families R ⊆ Θpoly and κ ∈ N, we
denote by Rκ := {Rκ | 〈Rλ〉λ∈N ∈ R} ⊆ Θ the resource specification
obtained by taking the κ-th element of every family.

Finally, a family of functions 〈ελ〉λ∈N mapping distinguishers to
values in [0, 1] is said to be negligible, if for all families of efficient
distinguishers 〈Dλ〉λ∈N, the function λ 7→ ελ(Dλ) is negligible.

Based on those definitions, we now introduce an asymptotic compu-
tational and simulation-based construction notion. This construction
notion closely resembles the ones by other composable frameworks, such
as the UC framework, that hard-code those aspects.

26 Chapter 2. Preliminaries

Definition 2.2.15. Let R ⊆ Θpoly and S ⊆ Θpoly be two specifications
of efficient resource families, and let 〈πλ〉λ∈N be an efficient protocol
family for the the respective Rλ. If there exists an efficient simulator
family 〈σλ〉λ∈N, and a negligible family of functions 〈ελ〉λ∈N, such that

∀λ ∈ N : πλ(Rλ) ⊆
(
σλ(Sλ)

)ελ ,
we say that the protocol π asymptotically constructs S from R, and
denote it by

R 〈πλ〉λ∈N−−−−−−→
asympt

S.

In a slight abuse of notation, we usually omit the protocol’s explicit
dependence on the security parameter λ.

As usual, we can derive a more concrete composition theorem for
this type of constructions.

Corollary 2.2.16. For any specifications of efficient families R,S, T ⊆
Θpoly, and any efficient protocol families 〈πλ〉λ∈N and 〈π′

λ〉λ∈N, we have

1. R π−−−−→
asympt

S ∧ S π′−−−−→
asympt

T =⇒ R π′◦π−−−−→
asympt

T ,

2. R π−−−−→
asympt

S =⇒ [R, T] π−−−−→
asympt

[S, T].

Proof (Sketch). This follows directly from Corollary 2.2.13 and the
closedness properties of the standard efficiency and negligibility notions.
In particular, for two efficient simulator families 〈σλ〉λ∈N and 〈σ′

λ〉λ∈N,
their sequential composition is efficient as well. Moreover, if 〈ελ〉λ∈N is
negligible and 〈π′

λ〉λ∈N and T ⊆ Θpoly are efficient, then 〈(ελ)π′
λ
〉λ∈N

and 〈(ελ)Tλ〉λ∈N are negligible as well.

2.2.6 An Example
In this section, we exemplify our notation and conventions by a simple
construction statement.

To this end, we consider the construction of a secure communication
channel from an authentic one and a shared secret key, using a MAC
scheme. The construction thereby assumes that both the sender and the
receiver are honest, while an eavesdropper might try learn information

2.2. Constructive Cryptography 27

A B

E

F

Key

AuthChan

πA
E πB

E
A B

E

F

SecChan

σE

Figure 2.1: Execution of the protocol in the real world by Alice and
Bob (left), and the ideal world with the simulator (right). We depict
resources using rectangular boxes and converters using rounded boxes.

about the messages sent. Hence, we use the so-called Alice-Bob-Eve
setting that considers the parties A (the honest sender Alice), B (the
honest receiver Bob), and E (the eavesdropper Eve). In addition, we
consider a so-called free interfaces F that are neither controlled by the
honest nor dishonest parties, but are rather directly controlled by the
environment. In our example, the free interface is useful to express the
protocol’s correctness condition by enforcing that the honest receiver
actually outputs the correct message whenever the environment delivers
the corresponding message-tag pair, irrespective of the dishonest party’s
actions. In summary, we consider a setting with P = {A, B, E, F}, where
protocol converters are attached to the interfaces controlled by A and B,
respectively, and the simulator is attached to interfaces belonging to E.
See Figure 2.1 for an illustration of the construction.

The assumed specification consists of the parallel composition of an
authentic channel and a shared secret key, depicted in Figure 2.2 . The
atomic resources we consider in this work typically only have a single
interface per party; thus, in pseudo-code descriptions we just label it
by the party’s name. Note that the (overly idealized) shared secret
key resource does not provide Eve any capabilities, such as influencing
the key’s availability. For simplicity, we thus omit Eve’s interface
in the description. When considering a composed resource, such as
[AuthChan,Key], then we address a party’s interfaces by referring to the
corresponding atomic resource’s name, e.g., interface A of AuthChan.

28 Chapter 2. Preliminaries

Resource AuthChan

Initialization
MA[·]← ⊥
mB ← ⊥, n← 0

Interface A
Input: (send,m) ∈ E.C
n← n+ 1
MA[n]← m
output ok

Interface B
Input: receive

output mB

Interface E
Input: (leak, i) ∈ N

output MA[i]

Interface I, I ∈ {E, F}
Input: (deliver, i) ∈ N
mB ←MA[i]
output ok

Resource Key

Initialization
k � K

Interface I, I ∈ {A, B}
Input: fetch

output k

Figure 2.2: The assumed real-world resources of the authenticated-
encryption example: an insecure channel and a shared key.

To construct the secure channel, the protocol πE trivially builds
on a symmetric encryption scheme E = (E .K, E .M, E .C, E .Enc, E .Dec),
consisting of a key space E .K, message space E .M, and ciphertext space
E .C, as well as encryption and decryption algorithms E .Enc and E .Dec,
respectively. That is, Alice’s converter simply encrypts each message
and Bob’s one decrypts it, respectively. A description of the converters
is presented in Figure 2.3 . Note that in a slight abuse of notation, we
write a protocol just as a tuple of converters, e.g., πE := (πA

E , π
B
E) instead

of explicitly denoting the intended wiring γA and γB, whenever it is clear
from the context. In particular, we typically describe the converters in
conjunction with the intended wirings, e.g., stating call (send, c) at
int. A of AuthChan in a pseudo-code description.

The constructed specification is described simulation-based, i.e.,
consists of the secure channel SecChan with a simulator σE attached to
Eve’s interface. The secure channel thereby works analogously to the
authenticated one, except that Eve’s leak capability is replaced with a
leakLen one, returning |MA[i]|. The simulator works straightforwardly
by picking its own encryption key, and outputting an encryption of the
all-zero string of appropriate length as ciphertext (cf. Figure 2.4a).

It is now easy to see that the construction is secure, if the underlying
encryption scheme is IND-CPA secure (and correct).

2.2. Constructive Cryptography 29

Converter πA
E

Initialization
call k ← fetch

at interface A of Key

Emulating Int. A of SecChan
Input: (send,m) ∈ E.M
c← E.Enc(k,m)
call (send, c)

at interface A of AuthChan
return ok

Converter πB
E

Initialization
call k ← fetch

at interface B of Key

Emulating Int. B of SecChan
Input: receive

call c← receive
at interface B of AuthChan

if c 6= ⊥ then
return E.Enc(k, c)

else
return ⊥

Figure 2.3: The pair of converters using a symmetric encryption scheme
E to construct a secure channel from an authenticated one and a key.

Proposition 2.2.17. Let E denote a perfectly correct symmetric en-
cryption scheme, and let AuthChan, SecChan, Key, πE and σE be as
described above. Moreover, let CPA0 and CPA1 be the two systems de-
fined in Figure 2.4b , formalizing a left-or-right variant of the IND-CPA
game. Finally, let c denote a reduction protocol that connects to either
of the systems and emulates the interface of the assumed or constructed
resource as follows:

• upon input a message m at Alice’s interface, send the pair (m, 0|m|)
to the connected system and store the returned ciphertext;
• upon querying the ciphertext or delivering a message at Eve’s
interface, return the corresponding ciphertext, or store the corre-
sponding plaintext, respectively;
• upon fetching a message at Bob’s interface, output the last stored
message.

Then, for the reduction ε(D) := ∆Dc(CPA0,CPA1) we have

[AuthChan,Key] πE ,σE ,ε−−−−−−→
sim

SecChan,

where Dc denotes the modified distinguisher that first applies c to the
resource it interacts with.

30 Chapter 2. Preliminaries

Proof. This follows from observing cCPA0 = πE [AuthChan,Key] and
cCPA1 = σESecChan, where Eve’s output matches by definition and
Bob’s outputs matches by correctness of the scheme.

Note that in another slight abuse of notation, we allow ourselves
to just write a resource R instead of a singleton specification {R} in
construction statements.

Converter σE

Initialization
k � E.K, MA[·]← ⊥

Emulating Int. E of AuthChan
Input: (leak, i), i ∈ N

if MA = ⊥ then
call `← (leakLen, i)

at interface E of SecChan
if ` 6= ⊥ then

MA ← E.Enc(k, 0`)
return MA[i]

Input: (deliver, i), i ∈ N
call deliver at int. E of SecChan
return ok

(a) The simulator.

Resource CPAb

Initialization
k � E.K

Interface E

Input: (Encrypt, m0, m1) ∈ E.M2

require |m0| = |m1|
output E.Enc(k,mb)

(b) The two resources for the left-or-
right formalization of the IND-CPA
game.

Figure 2.4: A formal description of the simulator and the IND-CPA
game involved in the construction.

Chapter 3

Constructive
Cryptography with
Events

In this chapter, we introduce an extension of Constructive Cryptography,
which we call Constructive Cryptography with events. This extension
enhances the abstraction boundary of the modularization units—i.e.,
resources and converters—by a so-called global event history and, thus,
addresses the problem of modularization impeded by dependencies. On
a formal level, CC with events primarily consists of an extended system
algebra compared to the one introduced in Section 2.2.2 . As this novel
system algebra satisfies the same higher-level axioms of Constructive
Cryptography, results proven at a those abstraction levels directly
translate over.

3.1 Introduction
3.1.1 Motivation
At the heart of every composable cryptographic framework, lies the
concept of a module or component that provides provides some well-
defined interface to the environment. In the traditional Constructive

32 Chapter 3. Constructive Cryptography with Events

Cryptography framework, as well as most other composable frameworks,
this interface consists solely of the input-output behavior, i.e., compo-
nents can interact with one another by exchanging by providing explicit
inputs and receiving corresponding outputs.

While having such a well-defined abstraction boundary is crucial
for modularity, it implies that in certain applications seemingly natural
modules cannot be readily modeled as separate components, due to
certain interdependencies not appearing as part of their regular com-
munication. For instance, in Chapter 6 , we consider the case of secure
messaging protocols. In those protocols, it is common that for instance
the leakage of one parties memory (one module) can affect the security
of a communication channel (another module). Yet, requesting the
memory resource to explicitly inform the channel resource about the
leakage not only seems unnatural, but is in the traditional system model
of Constructive Cryptography outright impossible. As a consequence,
one would have to model the memory and communication channel as
one joint resource.

In summary, the abstraction boundary imposed by the regular Con-
structive Cryptography system algebra frequently impedes modulariza-
tion, resulting in unnecessary complicated and hard to reuse statements.

3.1.2 Contributions
In this chapter, we enhance the interface of resources and converters to
relax the the abstraction boundary in a clean and well-controlled manner.
More concretely, introduce the notion of global events. Each module
(resource or converter) can, thereby, trigger events from a predefined
set, on whose occurrence and global order other modules can depend
on. This allows the designer of a resource to choose which events are
exported as part of the abstraction interface and, thus, greatly enhance
the flexibility of the resource paradigm.

This flexibility provides several key advantages. First, it provides a
solution to the aforementioned lack of modularization. In Chapter 6 , we
make use of the global history to properly decompose the statements.
For instance, in the above example, the memory resource can export the
event of having been leaked, on which the behavior of the channel can
then depend on, without this information having to be routed explicitly.
Second, and of independent interest, global events also allow to define

3.2. Systems with Events 33

novel relaxations. In Chapter 5 , we build on global events to propose
a novel solution to circumvent the so-called simulator commitment
problem of composable security notions.

3.1.3 Related Work
The global event history is somewhat reminiscent of the “directory” ITI
used in the recent version (as of December 2018) of the UC framework
[Can01] to keep track of corrupted parties. Our notion is, however,
more general, as it not only considers corruptions but arbitrary events.
Moreover, we stress that our extension is cleaner from a conceptual point
of view, as it consists of an alternative instantiation of Constructive
Cryptography’s higher-level axioms, taking advantage of CC’s top-down
abstraction approach.

3.2 Systems with Events
3.2.1 The Global Event History
We model events as a generalization of monotone binary outputs (MBO)
introduced by Maurer et al. [MPR07]. Roughly, an MBO of a resource
is an additional output that can change from 0 to 1 but not back. This
can be interpreted as a single event, which happens when the MBO
changes to 1. We generalize this to many events by the means of a
global event history.

Definition 3.2.1. Let N be a name set. The global event history E is
a list of elements of N without duplicates.

For n ∈ N , we use En as a short-hand notation to denote that n is
in the list E , and say that the event happened. Analogously, we use
¬En to denote the complementary case. Furthermore, we denote by
E +← En, the act of appending n to the list E , if ¬En, and leaving the
list unchanged otherwise.

We also introduce the natural happened-before relation on the events.

Definition 3.2.2. For n1, n2 ∈ N , we say that the event n1 precedes
the event n2 in the event history E , denoted En1

≺ En2
, if either

34 Chapter 3. Constructive Cryptography with Events

• both events happened, i.e, En1
and En2

, and n1 is in the history
before n2,

• or only n1 happened so far.

Note that saying that En1
≺ En2

is true if so far only the former one
has happened best matches the type of statement we usually want to
make: for instance, if we express the condition that a message is secure
if the key has been securely erased before the memory was leaked, then
we do not need to insist that the memory actually leaked.

Composite events. An event is essentially just a named monotone
condition. Thus, any monotone predicate P (E), e.g. P (E) = En1

∨ En2
,

of the event history can be seen as an event as well. As a consequence,
we overload the notation for events accordingly, and for instance write
En12

:= En1
∨ En2

instead.

3.2.2 Event-Aware Systems
We consider resources and converters that can (1) read the global event
history, and (2) append to the event history from a fixed subset of N .

Definition 3.2.3. An event-aware resource R with associated event-set
NR ⊆ N is a resource with alphabet X ′ := X × 2E , where 2E denotes
the set of all event histories, such that

• for all i ∈ N, EXi is a prefix of EYi , and all additional elements
thereof are from NR, where EXi and EYi denote the state of the
event history encoded as part of the i-th input and output, re-
spectively;

• the resource is only defined if EYi−1 is a prefix of EXi , and all
additional elements are not from NR.

We denote the set of all event-aware systems (with some associated
event set) by ΘE .

Analogous to regular resources, the parallel composition operator is
defined. Besides the party’s interface sets having to be disjoint, however,
also the associated event-sets have to be disjoint. For two event-aware

3.3. Constructions and Relaxations 35

resources R and S with disjoint event-sets NR and NS, the resulting
resource [R,S] has the associated event-set NR ∪ NS. Event-aware
converters (and hence protocols) are defined analogously as well. We
denote by ΣE the set of all event-aware protocols. Note that attaching
a converter to a resource is only defined, if their respective event-sets
are disjoint, and say that the converter is compatible with the resource.
Observe that composition order invariance, i.e., Proposition 2.2.3 , still
holds. It is not affected by the additional conditions imposed by event-
awareness.

We use the following conventions. When describing resource and
converters (as pseudo-code), we do not treat the event history as part
of the input and output, but rather treat E as a global object. That is,
we consider the global event history is an additional component that
models event-awareness in an abstract manner, rather than as inputs
and outputs that need to be explicitly passed between components.
Moreover, to simplify the associated event-set, we use as event-name
pairs (id, label), where label is a descriptive keyword (e.g., leaked), and
id identifies the resource triggering the event. We then use the notation
E label
id .
Finally, note by convention converters implementing protocols do

not depend on the event history, since an event formalizes something
that might be observable, rather than something that is guaranteed to
be observable by the honest parties. Event-aware converters are, thus,
mainly reserved to simulators.

3.3 Constructions and Relaxations
Since event-aware systems are a special case of the regular ones—with
certain additional restrictions on when the operators are defined—the
regular construction notion still applies. In particular, the composition
theorem of the basic construction notion is preserved as well, which solely
builds on composition order invariance. In the following, we describe
some differences that apply to more specific types of specifications and
their respective construction notions. Note that in terms of notation, we
do not make any differences between regular CC and CC with events for
constructions and relaxations. For each part of this work, we however
make explicit which version of the framework we use.

36 Chapter 3. Constructive Cryptography with Events

3.3.1 Event-Aware Reductions
Computational security is defined via a so-called distinguisher, which is
a special type of environment, interacting with either of the resources.
In Constructive Cryptography, this is formalized using an appropriate
ε-relaxation (cf. Section 2.2.3).

Clearly, the type of distinguisher used thereby has to be adjusted
accordingly when dealing with event-aware resources. Formally, a
compatible distinguisher has to provide the current event history with
each input, subject to the conditions for the resource to be well-defined.

Definition 3.3.1. For two resources R and S, a distinguisher D is
compatible if

• with each input, it provides an event list which is an extension of
the one last output by the resource it is interacting with;

• it neither triggers events that are associated with either R or S.

The distinguishing advantage is then accordingly only defined for
compatible distinguishers, and the ε-relaxation only quantifies over
compatible distinguishers.

3.3.2 Event Renaming
The goal of a construction step πR ⊆ S is to abstract away certain
details of the real-world specification πR by the simpler to understand
specification S. Introducing global events in a naive way, however, can
thwart this goal. For instance, consider a real-world resource containing
a leakable memory resource that is used by the protocol to store a
key. In the ideal world, this memory might well be abstracted away or
replaced by a key. Hence, for the sake of understandability, the memory-
leaked event in the real world should be renamed to key-leaked. That is,
in the end event’s name are just a syntactical placeholder without any
deeper meaning, and thus renaming should be applied whenever it aids
understandability. Moreover, in certain cases it also seems desirable
to have a more fine-grained consideration of events in the ideal world,
for instance by separating a message-received event into a successful
and unsuccessful one (where the notion of successful might not have
been present in the assumed specification but only introduced by the

3.3. Constructions and Relaxations 37

protocol). In many instances, this allows to formalize the achieved
security properties in a more intuitive and simpler manner.

To accommodate such renamings and refinements, we introduce an
explicit (partial) event mapping function τ as follows.

Definition 3.3.2. Let R be a resource with associated event set NR
and τ : NR → N a (partial) renaming function. Then, we denote by τ(R)
the resource with associated event set img(τ) = τ(NR) that behaves as
follows:

• In terms of input-output behavior, it behaves equivalently to R.

• Upon every output, it applies τ to the global event history (which
formally is encoded as part of the output), leaving elements out-
side NR unchanged. Duplicates are dropped if necessary. The
unmodified version is stored for handling the next input.

• Upon every input, it undoes τ to the global event history, using
the recalled list of modifications.

When referring to real-world events for specifying ideal-world guarantees,
we will sometimes use Ẽ := τ(E) as a shorthand notation to denote the
event-history as visible to the outside world.

While an event mapping is not a relaxation (a mapped specification
is not a superset of the original one), it exhibits similar properties.

Proposition 3.3.3. Let R be a resource with associated event set NR.
For every protocol π and resource S that do not depend on events
renamed by τ , we have

πτ(R) = τ(πR)

and
[τ(R),S] = τ([R,S]).

Proof. This follows directly from the definition of τ(R).

Since we mostly consider protocols that are event agnostic, this
in particular implies that event mapping interacts gracefully with the
construction notion, as expressed by the following corollary.

38 Chapter 3. Constructive Cryptography with Events

Corollary 3.3.4. Let R, S, T be specifications and π and π′ protocols.
If for the first property π′ and for the second property T do not depend
on events renamed by τ , then we have

1. R π−−−→ τ(S) ∧ S π′−−−→ τ ′(T) =⇒ R π′◦π−−−−→ τ(τ ′(T)),

2. R π−−−→ τ(S) =⇒
[
R, T

] π−−−→ τ(
[
S, T

]
).

Proof. The properties follow directly from Proposition 3.3.3 , as

π′(πR) ⊆ π′(τ(S)) = τ(π′S) ⊆ τ(τ ′(T))

and
π[R, T] = [πR, T] ⊆ [τ(S), T] = τ([S, T]).

For simulation-based constructions, i.e., R π,σ,ε−−−−→
sim
S, the analogous

result can be stated, as long as σ does not depend on events renamed
by τ . In all situations encountered in this thesis, this condition holds
true.

While the event mapping could be made a further parameter of the
construction syntax, we refrain from doing so due to the rare usage.
Rather, we just state the remapping in conjunction with the construction.
Observe that in the case of simulation-based constructions, the event
remapping actually refers to the entire ideal specification (σS)ε rather
than just S.

Chapter 4

Context-Restricted
Constructions

In this chapter, we study the pitfall of popular and powerful abstraction
boundaries that are known to be impossible to construct from resources
readily available in the real world, and propose the notion of context-
restricted constructions to salvage them.

4.1 Introduction

4.1.1 Motivation
One of the obstacles that composable frameworks face, is that sometimes
widely used abstraction boundaries are known to be impossible to
construct from resources readily available in the real world.

An illuminating example thereof is the so-called random oracle
[BR93], which originally was introduced as an powerful abstraction of
hash functions. Over the years, the random oracle model (ROM) has
proven to be an important tool towards establishing confidence in the
security of real-world cryptographic constructions. The paradigm can
be described in two steps: first, to design a protocol and prove it secure
in the ROM, thus using a random oracle instead of a hash function;
second, to instantiate the random oracle with a cryptographic hash

40 Chapter 4. Context-Restricted Constructions

function. The random oracle is, however, not only used as a model
to prove protocols in, but it also serves as a reference point for the
designers of hash functions. The indifferentiability framework [MRH04],
while being a general framework, is most famously used to phrase the
security obligation of a hash function construction: the hash function
is proven indifferentiable from a random oracle when using an ideal
compression function (e.g. a fixed input-length random oracle), thereby
excluding attacks exploiting the construction. Since indifferentiability
is equipped with a composition theorem, this guarantee holds moreover
irrespective of the context the hash function is used in.

However, it is well known [CGH04] that no hash function realizes a
random oracle; hence, once the random oracle is instantiated the security
proof degenerates to a heuristic security argument. Analogously, just as
no hash function can instantiate a random oracle, no real compression
function can instantiate the idealized version assumed in the proof.
In the language of Constructive Cryptography, this means that for a
public random oracle resource PO and a public hash key resource HK,
there exists no deterministic and stateless protocol h (implementing
a hash function), such that HK h−−−−→

asympt
PO. Nevertheless, most real-

world protocols built on the random oracle paradigm are believed to be
secure and indifferentiability proofs are still considered vital towards
establishing confidence in hash function constructions—despite the
unsoundness of the general paradigm.

To resolve this apparent contradiction between the ROM paradigm
proven to be unsound and actual protocols building on it believed
to be secure, Bellare, Hoang, and Keelveedhi [BHK14] proposed the
notion of universal computational extractors (UCE). This notion is
based on the observation that for most “real-world” protocols proven
secure in the random oracle model, instantiating the random oracle
with a concrete hash function is not known to be insecure. The UCE
framework revisits the question of what it means for a hash functions
to “behave like a random oracle” and formalizes families of security
notions aimed at bridging the gap between the general impossibility
result and the apparent security of concrete protocols. UCE is, however,
formalized as a multi-stage game without clear composition guarantees.
In fact, Ristenpart, Shacham, and Shrimpton pointed out [RSS11], that
multi-stage games generally interact poorly with composable security

4.1. Introduction 41

definitions, invalidating some of the intuitive properties one might
assume. This raises the question, how one can soundly embed a UCE-
style definition in a composable framework, such that the resulting
notion has clear semantics and preserves (most of) the benefits of
composable security frameworks.

4.1.2 Universal Computational Extractors
Bellare, Hoang, and Keelveedhi [BHK13a] proposed the notion of univer-
sal computational extractors (UCE), refining the predominant random
oracle methodology. This notion is based on the observation that for
most “real-world” protocols proven secure in the random oracle model,
instantiating the random oracle with a concrete hash function is not
known to be insecure. The UCE framework revisits the question of
what it means for a hash functions to “behave like a random oracle”
and formalizes families of security notions aimed at bridging the gap
between the general impossibility result for the ROM and the apparent
security of concrete protocols.

The UCE framework defines a two-stage adversary, where only
the first stage—the source S—has access to the oracle (either the
hash function or the random oracle) and only the second stage—the
distinguisher D—has access to the hash key hk. The source provides
some leakage L to the distinguisher that then decides with which system
the source interacted. The definition of the security game UCES,DH
is presented in Figure 4.1 . Therein, H.Kg denotes the key-generation
algorithm, H.Ev the deterministic evaluation algorithm, and l the output
length associated with the family of hash functions H. Finally,

Advuce
H,S,D(λ) := 2 Pr[UCES,DH (λ) = 1]− 1

denotes the UCE-advantage of (S,D) on H.
Without any further restriction, this game is trivial to win: the

source queries some point x, obtains the result y, and then provides the
tuple (x, y) as leakage to the distinguisher which then decides whether y
matches with the hash of x. Therefore, in order for this definition to be
meaningful, the leakage has to be restricted in some sense, which gives
rise to various UCE-classes depending on the kind of restriction. The
basic restriction proposed was that the queries of the source S must be
unpredictable given the leakage L. Both statistical unpredictability as

42 Chapter 4. Context-Restricted Constructions

The UCE game

function Main UCES,D
H

(λ)
b � {0, 1}; hk � H.Kg(1λ)
L � SHash(1λ)
b′ � D(1λ, hk, L)
return (b′ = b)

function Hash(x, 1l)
if T [x, l] = ⊥ then

if b = 1 then
T [x, l]← H.Ev(1λ, hk, x, 1l)

else T [x, l] � {0, 1}l
return T [x, l]

Figure 4.1: The UCE game for a hash function H, a source S, and a
distinguisher D.

well as computational unpredictability have been proposed. However,
the latter has been shown to be impossible assuming iO exists [BFM14],
leading to the proposal of a variety of other computational source
families in [BHK13b].

4.1.3 Indifferentiability
In this chapter, we consider the so-called indifferentiability setting.
While indifferentiability—originally introduced by Maurer, Renner, and
Holenstein [MRH04]—is a general framework, it is most famously used
to phrase the security obligation of a hash function construction: the
hash function is proven indifferentiable from a random oracle when using
an ideal compression function (e.g. a fixed input-length random oracle),
thereby excluding attacks exploiting the construction. Indifferentiability
is a special case of the Constructive Cryptography framework, as pointed
out by Maurer and Renner [MR16]

First, indifferentiability is simulation based. Second, indifferentia-
bility considers a setting with one honest party Alice, and a dishonest
party Eve, i.e., P = {A,E}. Hence, whenever a protocol converter π is
considered, it is understood to be connected to Alice’s interfaces, and
whenever a simulator σ is considered, it is understood to be connected to
Eve’s interfaces. As a convention, in figures, such as Figure 4.2 , Alice’s
interfaces are drawn on the left and Eve’s on the right of the resource.
Analogously, in algebraic expressions we write πRσ instead of σπR to
indicate to which party’s interfaces the respective protocol is applied.

4.1. Introduction 43

A E
π R

A E
S σ

Figure 4.2: The real (left) and the ideal (right) setting considered in
indifferentiability. The honest party’s interface is depicted on the left,
and the dishonest’s on the right side.

Third, indifferentiability considers so-called outbound resources only,
meaning that interaction at one party’s interfaces does not influence
the other party’s interfaces. Finally, for the sake of presentation and
making our notions comparable to game-based notions, we consider
asymptotic constructions, as introduced in Section 2.2.5 .

Note that our results in principle naturally carry over to more
general Constructive Cryptography settings, with concrete security and
potentially more parties, as long as the dishonest party is fixed. We
have opted for the simpler indifferentiability setting here, because our
concrete results are centered around hash function constructions.

4.1.4 Contributions
Context-restricted constructions. First, we introduce a general-
ization of the construction notion called context-restricted constructions.
This generalization allows us to model that a resource cannot be instan-
tiated in every context but only within a well-specified set of contexts.
That is, the notion gives up on the universal quantification of environ-
ments by only considering certain admitted protocols for the honest
users. While this clearly cedes general composability, we demonstrate
that the remaining composition guarantees exactly correspond to the
ones intuitively expected from having such an admissible context set.

Generalizing UCE. Second, we consider the random oracle resource.
We, thereby, show that the UCE framework can be seen as a special case
of context-restricted constructions when applied to the construction of
a random oracle by the means of a hash function. Thereby we propose
an alternative interpretation of the UCE framework in a traditional
single-stage adversary model with well-defined composition guarantees
and provide a direct relation between the UCE and the indifferentiability

44 Chapter 4. Context-Restricted Constructions

frameworks, which is a special case of the CC framework.
In addition, we introduce two generalizations of the split-source

UCE-class, which cannot be expressed in the original UCE framework
without alteration. In fact, those generalizations naturally follow by
viewing UCE as a special case of context-restricted constructions.

Moreover, we demonstrate that the generalizations of UCE, such as
public-seed pseudorandom permutations (psPRP) by Soni and Tessaro
[ST17] and interactive computational extractors (ICE) by Farshim and
Mittelbach [FM16], can be expressed as context-restricted constructions
of respective resources, as well.

Unifying UCE and indifferentiability. Finally, we propose to con-
sider context-restricted constructions as a methodology to analyze
the security of common hash-function constructions. In contrast to
indifferentiability—which is commonly used to prove the soundness of
hash-function constructions—context-restricted constructions allow us
to consider more fine-grained versions of both the assumption on the
compression function as well as the guarantee of the constructed hash
function. In particular, we demonstrate that context-restricted construc-
tions supersede the aspects of UCE (a multi-stage game to allow for
protocols that soundly build on a random oracle) and indifferentiability
(a composable definition to allow for sound hash function constructions).
In other words, we show that context-restricted constructions can over-
come the obstacles pointed out by Ristenpart et al. in combining two
such notions.

As a technical result, we investigate the split-security of the Merkle-
Damgård scheme and we prove that the constructed hash function is
split-secure if the underlying compression function is strong-split secure
(as opposed to the usual much stronger assumption of the compression
function being a random function) if the hashed message has a sufficient
min-entropy density from the distinguisher’s point of view.

4.1.5 Related Work
Restricted composability. Restricted composability has been con-
sidered by Backes, Dürmuth, Hofheinz, and Küsters in the context of the
Reactive Simulatability framework [BDHK06]. Analogous to our notion
of context-restricted constructions, the authors give up the universal

4.1. Introduction 45

quantification of environments that allows for general composability by
only considering certain admitted protocols for the honest users. On a
technical level, however, their approach significantly differs in how those
restrictions are formalized. While context-restriction constructions are
simply parametrized in a set of admissible protocols, conditional reactive
simulatability formalizes the admissibility using so-called predicates. A
predicate thereby restricts the kind and the order of messages on ports
of the system under consideration. This, however, does for instance
not allow to circumvent the impossibility results for the ROM, as an
environment testing whether a hash query is consistent with the answer
he computed himself cannot be expressed as such a predicate (which
only sees that the hash key has been requested and that a single hash
query has been performed).

The incompatibility of UCE and indifferentiability. Several
works aimed to address the issue pointed out by Ristenpart, Shacham,
and Shrimpton in [RSS11] of multi-stage games, such as UCE, and
composable notions, such as indifferentiability, not interacting well.

In particular, Ristenpart, Shacham, and Shrimpton introduced reset
indifferentiability [RSS11] as a workaround to the composition problems
in multi-stage settings they highlighted. In [DGHM13], Demay et al.
gave an alternative interpretation of the example used by Ristenpart et
al. to demonstrate the issue. They prove that reset indifferentiability
is equivalent to indifferentiability with stateless simulators. Moreover,
they introduce the notion of resource-restricted indifferentiability, which
makes the memory used in the simulator explicit.

Finally, in [Mit14], Mittelbach presents a condition called unsplitta-
bility on multi-stage games, that allows to show that the composition
theorem of indifferentiability can be salvaged for iterative hash function
constructions. They formalize a condition that specifies certain multi-
stage games, in which the random oracle can be safely instantiated by
an iterated hash function based on an idealized compression function.
It has, however, not been studied to which extend this applies to the
various variants of UCE. In addition, unsplittability does not cover hash
function constructions based on a less ideal compression function that
satisfies a UCE-like security definition.

In comparison, the notion of context-restricted constructions we in-
troduce in this chapter aims at unifying UCE and composable definitions

46 Chapter 4. Context-Restricted Constructions

under the umbrella of a single framework with explicit composability
guarantees.

Generalizing UCE. Since the introduction of the UCE framework,
various additional UCE-families, and various generalizations of the
framework itself, have been proposed.

In [FM16], Farshim and Mittelbach introduced a generalization of
UCE called interactive computational extractors (ICE). Generalizing
UCE to interactive scenarios is also one of our contributions. The
generalization they propose and the one we propose, however, differ on
a very fundamental level and pursue different directions. ICE makes
the two stages of the original UCE definition symmetrical where the
two stages jointly form the queries, requiring that neither one of them
can predict the query. In contrast, we exactly use the asymmetry of
UCE to embed it in the traditional indifferentiability setting with one
dishonest and one honest party, where naturally the honest party knows
the position where it queries the hash function.

In [ST17], Soni and Tessaro introduce the notion of public-seed
pseudorandom permutations (psPRP) that are inspired by UCE. In fact,
they introduce a generalization of UCE, called public-seed pseudoran-
domness, of which both psPRP and UCE are instantiations. For their
psPRP notion they introduce the unpredictability and reset-security
notions analogous to UCE, and moreover they study the relations be-
tween psPRP and UCE. In contrast to our notion, their definition is
still purely game-based. In Section 4.4 , we show that context-restricted
constructions are a strict generalization of their notion as well.

Using UCE to analyze hash-function constructions. Bellare et
al. [BHK14] have also suggested to use the UCE framework to study
the domain extension of a finite input-length random oracle to a UCE
secure variable input-length random oracle. Their motivation is based
on finding more efficient constructions if they only require the UCE-
security of the variable input-length random oracle. In contrast, we
consider the domain extension in a setting where we also assume the
compression function to be only UCE secure.

4.2. Context-Restricted Constructions 47

4.2 Context-Restricted Constructions
In this section, we introduce our notion of context-restricted construc-
tions, introduce the corresponding composition rules, and demonstrate
how this novel notion relates to the regular construction notion.

4.2.1 Modeling Context Restrictions
In this section we formally define the idea of restricting composition.
In order to do so, we define a context in which we allow the resource
S to be used. A context consists of an auxiliary parallel resource P
and some converter f applied by the honest party. We usually call this
converter f a filter to indicate that its goal is to restrict the access to the
resource S. To obtain general statements, we consider a set of contexts
instead of a single one. This set should be general enough to capture
many application scenarios but avoid those for which the impossibility
is known.

Definition 4.2.1. A context set C is a subset of Σ×Θ, where Σ denotes
the set of all protocols for the honest parties and Θ denotes the set of
all resources.

Recall that our goal is to make a modular statement: constructing S
from another specification R in each of these contexts in C, i.e., finding
a single protocol π such that πR can instantiate S in each of these
contexts of C. Therefore, the same context appears in both the real and
the ideal setting. See Figure 4.3 for an illustration of the distinction
problem when fixing a specific context. Quantifying over all contexts of
a set leads to the following definition of context-restricted constructions.

Definition 4.2.2. Let C ⊆ Σ×Θ be a given set of contexts, let R and S
be two specifications, and let π be an arbitrary protocol. Moreover, let
〈σC〉C∈C be simulators for each context, and let 〈εC〉C∈C be functions
mapping distinguishers to values in [0, 1]. Then, we define

R π,C,〈σC〉C∈C,〈εC〉C∈C−−−−−−−−−−−−−−−→
cr
S

:⇐⇒ ∀(f ,P) ∈ C : f [πR,P] ⊆
(
f [S,P]σ(f ,P)

)ε(f ,P) ,

and say that the protocol π C-restricted constructs S from R.

48 Chapter 4. Context-Restricted Constructions

f

π R

P

f
S

P

σ

Figure 4.3: The real (left) and the ideal (right) setting considered in
the context-restricted construction notion for a specific context (f ,P)
consisting of the filter f and the auxiliary parallel resource P.

For simplicity—and ease of comparing them with the asymptotic
UCE notion—we introduce the following asymptotic version of context-
restriction constructions.

Definition 4.2.3. Let C ⊆ Σpoly × Θpoly be a given set of efficient
context families, let R ⊆ Θpoly and S ⊆ Θpoly be two specifications
of efficient resource families, and let 〈πλ〉λ∈N be an efficient protocol
family. If there exists an efficient simulator family 〈σC,λ〉C∈C,λ∈N, and
a negligible family of functions 〈εC,λ〉C∈C,λ∈N, such that

∀(f ,P) ∈ C ∀λ ∈ N : f λ[πλRλ,Pλ] ⊆
(
σ(f ,P),λ f λ[Sλ,Pλ]

)ε(f ,P),λ ,

and say that the protocol π asymptotically C-restricted constructs S
from R, and denote it by

R 〈πλ〉λ∈N,C−−−−−−−−→
cr-asym

S.

In a slight abuse of notation, we omit in the following the explicit
dependence on the security parameter λ.

4.2.2 Composition
Analogous to the basic construction notion introduced in Section 2.2.3 ,
we are interested in deducing certain syntactical derivation rules—called
composition rules—for the context-restricted construction notion.

Before stating the composition theorem, we first observe that when
a resource S is constructed from R in a context (f ,P), the overall
environment of S actually consists of both (f ,P) and the distinguisher.

4.2. Context-Restricted Constructions 49

Especially, if S can be constructed from R within (f ,P), so can it within
(f ′ ◦ f , [P,P′]). This is because f ′ and P′ can be accounted for in the
reduction, or in the case of the asymptotic notion be simply absorbed
into the distinguisher, respectively. As a consequence, we define the
following closure operation on context sets.

Definition 4.2.4. Let C ⊆ Σ×Θ be a given set of contexts. We denote
by C ⊆ Σ×Θ the following set of contexts:

C := {(f ,P) ∈ Σ×Θ |
∃(g,Q) ∈ C ∃h ∈ Σ ∃U ∈ Θ : h ◦ g = f ∧ [Q,U] = P}.

The following proposition states the context-restricted construction
notion is idempotent under the closure of the context set.

Proposition 4.2.5. Let R,S denote two specifications of efficient re-
sources, π ∈ Σ denote a protocol, and let C denote a set of contexts. We
then have

R π,C−−−−→
cr-asym

S ⇐⇒ R π,C−−−−→
cr-asym

S.

Proof. The implication ⇐= is trivial, since C ⊆ C. We now prove the
other direction. Let (f ,P) ∈ C and notice that by Definition 4.2.4

this implies that there exists (g,Q) ∈ C, h ∈ Σ, and Z ∈ Θ such that
h ◦ g = f and [Q,Z] = P.

f P f P

h

g
π R

Q

Z

≈ h

g
S

Q

Z

σ

By our assumption, we know that for all R ∈ R, there exists a S ∈ S
and an appropriate simulator σ such that gπ[R,Q] is computationally
indistinguishable from g[S,Q]σ, as indicated by the dotted box in the
above figure. Thus, if we add the additional filter h and resource Z,
they remain indistinguishable.

50 Chapter 4. Context-Restricted Constructions

We now state the composition theorem of the context-restricted
construction notion. Note that the additional conditions compared
to the regular composition theorem (cf. Section 2.2.3) are a direct
consequence of the context restrictions. For instance, if in the sequential
case we construct T from S in one of the given contexts, we have to
ensure that now we are again in a valid context for constructing S from
R. This highlights that in order for context-restricted constructions to
be useful, the context sets have to be defined in a form that containment
can be easily verified.

Theorem 4.2.6. Let R, S, T , and U denote specifications, let π1 and
π2 denote protocols, and C1 and C2 contexts sets. We have

R π1,C1−−−−−→
cr-asym

S ∧ S π2,C2−−−−−→
cr-asym

T =⇒ R π2◦π1,C2−−−−−−−→
cr-asym

T ,

iff for all (f ,P) ∈ C2 it holds that (f ◦ π2,P) ∈ C1. Moreover, we have

R π1,C1−−−−−→
cr-asym

S =⇒ [R,U] π1,C2−−−−−→
cr-asym

[S,U],

iff for all (f ,P) ∈ C2 it holds that (f , [U ,P]) ⊆ C1.

Proof. We first show the sequential case. Assume that the prerequisite
regarding the two context sets is satisfied. Moreover, consider an arbi-
trary context (f ,P) ∈ C2 and the three system configurations, depicted
in the following figure.

f

π2 π1 R

P

≈ f

π2 S

P

σ1 ≈ f
T

P

σ2 σ1

Using the assumed property on C1 and Proposition 4.2.5 , we know that
the context indicated with the dashed line is a valid one and thus, for ev-
ery R ∈ R, there exists a S ∈ S, such that the first two systems from the
above figure are computationally indistinguishable. The second equality
follows directly from the premise. For the reverse direction, assume
that the implication does not hold, i.e., there exists a context (f ,P)
such that first and third systems are distinguishable. By assumption we

4.2. Context-Restricted Constructions 51

have, however, that the second and third are indistinguishable. Hence,
the first and second system must be distinguishable, which however by
assumption implies that the dashed context is not in C1.

In order to show the parallel composition property, assume again
that the corresponding condition on the context sets is satisfied. More-
over, consider an arbitrary context (f ,P) ∈ C1 and the two system
configurations, depicted in the following figure.

f

π1 R

U

P

≈ f

S

U

P

σ

Using the assumed property on C1 and Proposition 4.2.5 , we know that
within the context indicated with the dashed line, for every R ∈ R
there exists a S ∈ S, such that the two systems are indistinguishable.
In short, the parallel composition property is just associativity: The
resource U can be seen as both part of the context, indicated by the
dashed line, or part of the real and ideal resources, indicated by the
dotted line. The reverse direction, is again easy to see using an indirect
proof of implication.

4.2.3 The Relation to Regular Constructions
Recall that id denotes the identity protocol for which we have idR = R,
and that � denotes the neutral resource for which we have [R,�] = R, for
any resource R. It is then easy to see that the regular simulation-based
construction notion, which guarantees full composition, is a special case
of the context-restricted notion with the context set Cid := {(id,�)},
since Cid = Σ × Θ, i.e., the closure equals to the set of all resources
and converters. One can, however, also take the opposite point of view
and consider context-restricted constructions to be a special case of the
plain notion. From this perspective, a context-restricted constructions
is just a set of normal construction statements where the context is
part of the considered resources and protocols, respectively. This can

52 Chapter 4. Context-Restricted Constructions

be summarized in the following proposition.

Proposition 4.2.7. Let Cid := {(id,�)}. For all specifications R, S,
protocols π, and context sets C, we have

R π−−−−→
asympt

S ⇐⇒ R π,Cid−−−−→
cr-asym

S,

R π,C−−−−→
cr-asym

S ⇐⇒ ∀(f ,P) ∈ C : [R,P] f ◦π−−−−→
asympt

f [S,P].

Proof. This follows directly from Definitions 2.2.15 and 4.2.3 , and the
definitions of the identity protocol id and the neutral resource �,
respectively.

Using Cid = Σ×Θ, it is also easy to see that the composition theorem
Corollary 2.2.16 for regular (asymptotic) simulation-based constructions
is just a special case of Theorem 4.2.6 .

4.2.4 An Example: Diffie-Hellman Key Exchange
The general setting. Consider the following simple example: two
honest parties, e.g., Alice and Bob, perform a Diffie-Hellman key ex-
change using authenticated communication and then extract an actual
key by hashing the group element gab, while an eavesdropper is present.

Since both the honest parties hash the exactly same element, there
is no necessity to treat them as different parties and we can work in
the indifferentiability setting with one honest party and the adversary.
Consider the following resources: let DH be a Diffie-Hellman resource
(modeling the authenticated key exchange) that outputs gab at interface
A and (ga, gb) at interface E, let PO denote a random oracle accessible
by both parties, let HK denote a public hash key resource that outputs
the key at both interfaces, and let KEY be a resource that outputs a
uniformly random key at interface A and nothing at interface E. The
Diffie-Hellman converter π takes the group element gab at the inside
interface, inputs it to the random oracle, and outputs the obtained
result at the outside interface. It is easy to see that under the CDH
assumption we have [PO,DH] π−−−−→

asympt
KEY, using the simulator σ that

chooses (ga, gb) uniformly at random and simulates Eve’s interface of
the public random oracle.

4.2. Context-Restricted Constructions 53

Limitation of indifferentiability. The explicit appearance of the
resource PO in the above statement corresponds to a proof in the so
called random oracle model. The corresponding simulator σ chooses
(ga, gb) uniformly at random and simulates the interface E of the public
random oracle1 . If we want to obtain a proof in the standard model, i.e.,
getting rid of the assumed random oracle resource, we would need to find
a (potentially) keyed hash function that instantiates the random oracle,
which is of course impossible. Such a hash function is in our terminology
just a converter h that reduces the random oracle to the public hash
key resource HK, i.e., HK h−−−−→

asympt
PO. If we had such a hash function,

we could use parallel composition to obtain [HK,DH] h−−−−→
asympt

[PO,DH]

and then sequential composition to obtain [HK,DH] π◦h−−−−→
asympt

KEY.

Using context-restricted constructions. The main obstacle in the
way of the modular approach is that there exists no hash function h
that constructs the random oracle from a public hash key. However, it
might be feasible within an appropriate context set C. Composing this
with the second step should then be possible as long as the protocol
which we want to actually apply is in the context set, i.e., (π,DH) ∈ C.
We now show, that this is exactly what the composition theorem of
context-restricted constructions yields:

Assume that HK h,C−−−−→
cr-asym

PO for some context set C with (π,DH) ∈ C.
Let C′ := {(π,�)}. According to the parallel composition rule of The-
orem 4.2.6 , we have that [HK,DH] h,C′−−−−→

cr-asym
[PO,DH], since by defini-

tion of the the neutral resource, (π, [DH,�]) is equivalent to (π,DH)
and thus contained in C. Using Proposition 4.2.5 , we moreover have
[PO,DH] π,Cid−−−−→

cr-asym
KEY, and since by definition (id ◦π,�) = (π,�) ∈ C′,

we can apply sequential composition and obtain [HK,DH] π◦h,Cid−−−−−−→
cr-asym

KEY, which is equivalent to [HK,DH] π◦h−−−−→
asympt

KEY.

1The fact that the random oracle “vanishes” and is simulated in the ideal world
corresponds to the notion of a programmable random oracle.

54 Chapter 4. Context-Restricted Constructions

In summary, this shows that the composition theorem of the context-
restricted construction notion yields exactly what one expects: com-
position works if and only if the considered application is in the set of
allowed contexts. In fact, the type of contexts for which this construc-
tion works, is called split security in the UCE framework. Split security
is discussed in more detail in Section 4.5 .

4.3 UCE as a Special Case
In the following section, we consider context-restricted constructions
of random oracle resources in the so-called indifferentiability setting.
Recall, that indifferentiability considers outbound resources with two
parties: one honest and one dishonest. We then prove that the UCE
framework is actually a special case of such constructions.

4.3.1 Constructing Random Oracles
In the following, letH : H.K×H.X → H.Y denote a keyed hash function,
let HKH denote the public hash-key resource that chooses a key for H
and outputs it at both interfaces, let hashH denote the converter that
implements an oracle for H at the outside interface when connected to
HKH at the inside interface, and let H := hashHHKH as a shorthand.
Finally, let ROH denote the private random oracle resource with the
same input and output domains as H, where by private we mean that
this resource only accepts queries at interface A.2 See Figure 4.4 for a
formal description of these resources and converters.

We now present an alternative formalization of UCE based on
context-restricted constructions, more concretely that every possible
UCE-class Sx, where x ∈ {sup, cup, srs, crs, splt, . . .}, can be mapped to
a set of contexts Cx for which the UCE statement implies the context-
restricted construction statement HKH

hashH ,C−−−−−−−→
cr-asym

RO, and moreover, if
the construction statement were restricted to a specific simulator, the
reverse direction would hold as well.

2The choice to consider a private random oracle stems from the fact that in the
UCE framework the hash key is just chosen uniformly at random instead of allowing
an arbitrary efficient simulator with access to the random oracle to generate this
key.

4.3. UCE as a Special Case 55

Resource ROH

Initialization
k � H.K
for all x ∈ H.X do

T [x]← ⊥

Interface A
Input: (hash, x) ∈ H.X

if T [x] = ⊥ then
T [x] � H.Y

output T [x]

Resource H

Initialization
k � H.K

Interface A
Input: (hash, x) ∈ H.X

output H(k, x)

Interface E
Input: getKey

output k

Converter hashH

Initialization
call k ← getKey at int. A of HKH

Emulating Interface A of ROH

Input: (hash, x) ∈ H.X
return H(k, x)

Resource HKH

Initialization
k � H.K

Interface i ∈ {A, E}
Input: getKey

output k

Converter σH

Initialization
k � H.K

Emulating Interface E of HKH

Input: getKey
return k

Figure 4.4: Formal definitions of the random oracle resource, the corre-
sponding hash converter and hash-key resource, the shorthand resource
H := hashHHKH, and the simulator hard-coded by the UCE game.

56 Chapter 4. Context-Restricted Constructions

4.3.2 Non-Interactive Contexts
In order to map every UCE-class to an equivalent set of contexts, we first
introduce the set of non-interactive contexts, i.e., the communication
between the source and the distinguisher being unidirectional. This
restricted set of contexts faithfully encodes the structural restrictions
of the traditional UCE game (cf. page 42), where the communication
between the source and the distinguisher is unidirectional. Recall that
we are in the same general setting as the classical indifferentiability
framework, where one only considers out-bound resources for which
communication at one interface does not affect the other interface.

Definition 4.3.1. A non-interactive resource P is a resource that at
the interface E accepts at most a single trigger query (usually called
retrieve), and a non-interactive filter is a converter that at the outer
interface just accepts a single trigger query (usually called retrieve).
Let Θni denote the set of all non-interactive resources, and Σni denote
the set of all non-interactive filters, respectively.

Each UCE-source naturally corresponds to a set of non-interactive
contexts. This is formally stated in the following lemma by providing a
surjective mapping from the set of non-interactive contexts to the set
of UCE sources S.

Lemma 4.3.2. The function φ : Σni×Θni → S that maps every context
(f ,P) to the following UCE source S, that internally emulates f and P,
is surjective.

1. S queries the interface E of P to obtain z.

2. S queries the outside interface of the filter f to obtain y. The
queries at the inside interface of f are forwarded to the resource
P or output as queries to the hash oracle, respectively.

3. S outputs L = (y, z).

Proof. First, it is easy to see that φ is indeed a function from Σni×Θni to
S , i.e., φ(f ,P) is a valid UCE source for every context (f ,P) ∈ Σni×Θni.
To see that this function is surjective, fix an arbitrary source S. Now, let
fS denote the filter that upon receiving the query retrieve at the outer
interface internally runs S and answers this query with the leakage L.

4.3. UCE as a Special Case 57

H

f

hashH HKH

P

f

ROH

P

σ

Figure 4.5: The real (left) and the ideal (right) setting of context-
restricted indifferentiability when applied to UCE.

Each hash query of S is forward towards the attached random oracle or
hash resource, and the corresponding answer is forwarded to S. Clearly
φ(fS ,�) = S, where � ∈ Θni denotes the dummy resource.

4.3.3 RO-CRI Security Implies UCE Security
We now show, that for the specific simulator σH that chooses the
hash key uniformly at random, the distinguishing problem of a context-
restricted indifferentiability statement, for a fixed context (f ,P), on
random oracles is as hard as the UCE game with the source φ(f ,P). In
order to relate more directly to the traditional UCE definition, we first
introduce the RO-CRI advantage, which is depicted in Figure 4.5 for a
specific context (f ,P) ∈ C.

Definition 4.3.3. We define the random-oracle context-restricted in-
differentiability (RO-CRI) advantage of a distinguisher D on a hash
function H in a context (f ,P) as

AdvRO-CRI
H,f ,P,σ (D) := ∆D(f [H,P], f [ROH ,P]σ),

for a simulator σ. If there exists a simulator σ such that for all efficient
distinguishers and all contexts (f ,P) ∈ C, the RO-CRI advantage is
negligible, we say that H is C random-oracle context-restricted indiffer-
entiable.

The following lemma implies that for non-interactive contexts this
definition is equivalent to the game-based definition of UCE-security, if
we fix the simulator to σH .

58 Chapter 4. Context-Restricted Constructions

Lemma 4.3.4. Let S denote the set of all UCE-sources and φ : Σni ×
Θni → S the surjective function from Lemma 4.3.2 . For every dis-
tinguisher D, there is a distinguisher D′ (with essentially the same
efficiency) with

∀(f ,P) ∈ Σni ×Θni : AdvRO-CRI
H,f ,P,σH (D) = Advuce

H,φ(f ,P),D′ ,

where Advuce
H,S,D denotes the uce-advantage of (S,D) on H. Con-

versely, for every distinguisher D′ there is an equally efficient distin-
guisher D such that for all (f ,P) ∈ Σni ×Θni we have Advuce

H,φ(f ,P),D′ =
AdvRO-CRI

H,f ,P,σH (D).

Proof. For every distinguisher D for AdvRO-CRI
H,f ,P,σH (D) we can construct

a distinguisher D′ using a wrapper around D as follows: if D queries
the interface E of the hash resource (for the key) or P we return hk or
z, respectively; if D queries the outer interface of f , then y is returned.
The bit b′ is then set to the output bit of D. The key observation is that
the resources f [H,P] and f [RO,P]σH are independent to the order in
which D does those queries. It is now easy to see that AdvRO-CRI

H,f ,P,σH (D) =
Advuce

H,φ(f ,P),D′ .
The reverse direction works with an analogous wrapper that first

queries the system to obtain hk, z, and y. It then invokes D′ with hk
and L = (y, z) as inputs and outputs the bit b′.

We now state the main result of this section, relating the UCE
game to context-restricted indifferentiability. It implies that instead of
viewing the source as the first stage of an adversary, one can view it as
the set of contexts in which the hash function can safely be used.

Theorem 4.3.5. Let D denote the set of all efficient distinguishers.
For every class Sx of UCE sources, there exists a set of contexts Cx
such that AdvRO-CRI

H,f ,P,σH (D) is negligible for every D ∈ D and every
context (f ,P) ∈ Cx if and only if Advuce

H,S,D(·) is negligible for all
(S,D) ∈ Sx ×D.

Proof. Using the surjectivity of φ (Lemma 4.3.2), we have that for
any UCE-class Sx we can define Cx := φ−1(Sx) such that φ(Cx) = Sx.
Hence, by Lemma 4.3.4 we have that AdvRO-CRI

H,f ,P,σH (D) is negligible
for all efficient distinguishers D ∈ D and all contexts (f ,P) ∈ Cx iff
Advuce

H,S,D(·) is negligible for all (S,D) ∈ Sx ×D.

4.4. Public-Seed PRPs as a Special Case 59

The following corollary establishes the unidirectional implication
from UCE-security to context-restricted indifferentiability. The reverse
direction does not necessarily hold, since the context-restricted indiffer-
entiability notion allows for different simulators than the natural one
σH .

Corollary 4.3.6. Let D denote the set of all efficient distinguishers.
For every class Sx of UCE sources, there exists a set of contexts Cx
such that if Advuce

H,S,D(·) is negligible for all (S,D) ∈ Sx × D, then

HKH
hashH ,C

x

−−−−−−−→
cr-asym

ROH.

Proof. This follows directly from Definitions 4.2.3 and 4.3.3 and Theo-
rem 4.3.5 .

4.4 Public-Seed PRPs as a Special Case
In [ST17] Soni and Tessaro introduce the notion of public-seed pseu-
dorandom permutations (psPRP) that are inspired by UCE. In fact,
they introduce a generalization of UCE, called public-seed pseudoran-
domness (psPR), of which both psPRP and UCE are instantiations.
In the following, we give an analogous equivalence result to the one of
Section 4.3 between context-restricted indifferentiability and the general
public-seed pseudorandomness notion. The equivalence for the psPRP
notion then just follows as a trivial corollary.

4.4.1 Public-Seed Pseudorandomness
We first briefly recap the main definitions of public-seed pseudorandom-
ness as introduced in [ST17]. The authors first introduce the notion
of an ideal primitive, of which both random oracles and ideal random
permutations are instantiations of.

Definition 4.4.1. An ideal primitive is a pair I = (Σ, D), where
Σ = {Σλ}λ∈N is a family of sets of functions (such that all functions
have the same domain and range), and D = {Dλ}λ∈Nis a family of
probability distributions, where the range of Dλ is a subset of Σλ for
all λ ∈ N. The ideal primitive I, once the security parameter λ is fixed,
should be thought of as an oracle that initially samples a function I as

60 Chapter 4. Context-Restricted Constructions

its initial state according to Dλ from Σλ. Then, I provides access to I
via queries i.e. on input x it returns I(x).

Moreover, the authors of [ST17] then define the following notion of
Σ-compatible function families. A function family corresponds to an
algorithm that generalizes hash functions and pseudo-random permuta-
tions.

Definition 4.4.2. A function family F = (Kg,Eval) consists of a key
(or seed) generation algorithm F.Kg and an evaluation algorithm F.Eval.

• F.Kg is a randomized algorithm that on input the unary repre-
sentation of the security parameter λ returns a key k, and we let
[F.Kg(1λ)] denote the set of all possible outputs of F.Kg(1λ).

• F.Eval is a deterministic algorithm that takes three inputs; the
security parameter in unary form 1λ, a key k ∈ [F.Kg(1λ)] and
a query x such that F.Eval(1λ, k, ·) implements a function that
maps queries x to F.Eval(1λ, k, x).

We say that F is efficient if both Kg and Eval are polynomial-time
algorithms.

The goal of such a function family F is then to implement an ideal
primitive I with respect to the UCE-like security game depicted in
Figure 4.6 , considering an adversary that is split into a source S and a
distinguisher D. In contrast to the original definition, we only consider
the game for a single session, which can easily be related to the multi-
session one using a standard hybrid argument. Finally, Soni and Tessaro
define the pspr-advantage as follows:

Advpspr[I]
F,S,D(λ) = 2 Pr[psPRS,DF,I (λ) = 1]− 1.

4.4.2 Ideal Primitives and Function Families
In the following section, we argue that every ideal primitive I can be
understood as an ideal resource of an context-restricted indifferentiability
statement, and every function family F as an pair of real resource and
protocol, respectively. For simplicity, we ignore the security parameter
λ in the following.

4.4. Public-Seed PRPs as a Special Case 61

The psPR game

function Main psPRS,DF,I (λ)
b � {0, 1}
k � F.Kg(1λ)
f � Iλ
L � SO(1λ)
b′ � D(1λ, k, L)
return (b′ = b)

function O(x)
if b = 1 then

return F.Eval(1λ, k, x)
else

return f(x)

Figure 4.6: The public-seed pseudorandomness security game for a
function family F, an ideal primitive I, a source S, and a distinguisher
D.

For every ideal primitive I and for every function family F =
(Kg,Eval), denote the corresponding resource and converters depicted
in Figure 4.7 . Moreover, we also define the simulator σF , which simply
chooses a key according to Kg as well.

4.4.3 CRI-Security Implies psPR-Security
We now show, that for the specific simulator σKG, if for every specific
context (f ,P) the distinguishing problem of context-restricted indiffer-
entiability (CRI) is hard, then the UCE game with the fixed source
φ(f ,P) is hard as well, and vice versa. In order to relate more directly,
we introduce the psRP-CRI advantage.

Definition 4.4.3. We define the public-seed pseudorandomness context-
restricted indifferentiability (psRP-CRI) advantage of a distinguisher D
on a hash function H in a context (f ,P) as

AdvpsPR−CRI
F,I,f ,P,σ (D) := ∆D(f [evalFKGF,P], f [I,P]σ),

for a simulator σ.

The following lemma implies that for non-interactive contexts this
definition is equivalent to the game-based definition of UCE security, if
we fix the simulator to σF .

62 Chapter 4. Context-Restricted Constructions

Resource KGF

Initialization
k � F.Kg(1λ)

Interface i ∈ {A, E}
Input: getKey

output k at i

Resource I

Initialization
f � Iλ

Interface A
Input: (eval, x)

output f(x) at A

Converter evalF

Initialization
call k ← getKey at int. A of KGF

Interface out
Input: (eval, x)

return F.Eval(1λ, k, x) at out

Converter σF

Initialization
k � F.Kg(1λ)

Interface out
Input: getkey

return k at out

Figure 4.7: The resources and converters corresponding to the public-
seed pseudorandomness notion.

Lemma 4.4.4. Let F denote a function family and I an ideal primitive.
Furthermore, let S denote the set of all psPR-sources and φ : Σni×Θni →
S the surjective function from Lemma 4.3.2 . For every distinguisher D,
there is a distinguisher D′ (with essentially the same efficiency) with

∀(f ,P) ∈ Σni ×Θni : AdvpsPR−CRI
F,I,f ,P,σF (D) = Advpspr[I]

F,φ(f ,P),D′

Conversely, for every distinguisher D′ there is a distinguisher D (with
essentially the same efficiency) such that for all (f ,P) ∈ Σni ×Θni we
have Advpspr[I]

F,φ(f ,P),D′ = AdvpsPR−CRI
F,I,f ,P,σF (D).

Proof. The proof is analogous to the one of Lemma 4.3.4 .

We can now state the main result of this section, relating the public-
seed pseudorandomness game to context-restricted indifferentiability.

Theorem 4.4.5. Let F denote a function family, I an ideal prim-
itive, and let D denote the set of all efficient distinguishers. For

4.5. Generalizing Split-Security 63

every family Sx of psPR-sources, there exists a set of contexts Cx
such that AdvpsPR−CRI

F,I,f ,P,σF (D) is negligible for every D ∈ D and every
context (f ,P) ∈ Cx if and only if Advpspr[I]

F,S,D(·) is negligible for all
(S,D) ∈ Sx ×D.

Proof. The proof is analogous to the one of Theorem 4.3.5 .

This demonstrates that not only UCE is a special case of CRI but
also the more general notion of psPR is still a special case of CRI, where
each ideal primitive and function family correspond to the ideal and
real world, respectively. Similarly to UCE, the psPR notion is still
non-interactive and essentially hard-codes a specific simulator in the
security game.

4.5 Generalizing Split-Security
In this section, we present generalizations of the split-source UCE-class,
that cannot be formalized in plain UCE, based on context-restricted
indifferentiability.

4.5.1 Split-Security
The split-source UCE-class has been proposed by Bellare et al. after it
has been shown that computational-unpredictable UCE-security and
computational-reset-secure UCE-security is infeasible if indistinguisha-
bility obfuscation exists. Note that split-security is not a stand-alone
UCE-class in the sense that it is designed to be combined with either
computational unpredictability or reset-security, respectively.

The general idea of split-security is, that the source must not be
able to compute iO(H(· , x) = y), i.e., an obfuscation of a circuit
validating whether a given hash key was used to evaluate the hash
function. To achieve this, the source must be dividable into two parts
(S0, S1), where S0 chooses a vector (x1, . . . , xn) of query points, without
having access to the hash oracle, and S1 then just gets the evaluations
yi := Hash(xi), without having access to the hash oracle either. Thus,
no part of the source knows both xi and its evaluation yi, preventing
the aforementioned iO attack. A formal description of the split-source
S := Splt[S0, S1] is found in Figure 4.8 .

64 Chapter 4. Context-Restricted Constructions

Splt SOURCE

function Splt SourceHash(1λ)
(L0, x) � S0(1λ)
for i = 1, . . . , |x| do

y[i]← Hash(x[i])
L1 � S1(1λ, y)
L← (L0, L1)
return L

Figure 4.8: The definition of the split-source family in UCE.

4.5.2 An Alternative Representation
As established by Theorem 4.3.5 , using Csplt := φ−1(Ssplt) faithfully
translates split-security to context-restricted indifferentiability. In or-
der to work more easily with split-security and make it more directly
comparable to our later generalizations thereof, however, we introduce
an alternative representation of the split-security RO-CRI context set
using a fixed filter f splt, which encodes the structural restriction of
split-security.

Definition 4.5.1. The split RO-CRI context set is the set of filters
and non-interactive resource pairs of which the filter can be factorized
into the filter f splt, as depicted in Figure 4.9 , followed by an arbitrary
filter. Formally,

Csplt := {f ◦ f splt | f ∈ Σni} ×Θni.

Observe that the filter f splt expects the resource P to output a
sequence of pairs (xi, ai), where xi is intended to be unpredictable, then
hashes xi ‖ ai and outputs the result. Note that the distinction into an
unpredictable value xi and an auxiliary value ai solely prepares for our
generalizations. This type of resource corresponds to the first stage of
the source S0 that produces the queries3 and the leakage L0 (called Z
in the following definition), and we will call it a seed in the following.

3Here, we only consider split sources with a fixed number of queries. A polynomial
number of queries could easily be phrased as well.

4.5. Generalizing Split-Security 65

Definition 4.5.2. A seed with n outputs is a resource that initially
draws random values X1, . . . , Xn, A1, . . . , An, and Z according to some
joint distribution. Then, it accepts at the interface E a single trigger
query (usually called retrieve) that is answered with Z, and at the
interface A n trigger queries answered with (X1, A1) to (Xn, An). Let
Θseed
n ⊂ Θni denote the set of all seeds with n outputs. Moreover, let
Cseed
n := Σ×Θseed

n .

The second stage of the source S1 then translates to the additional
non-interactive filter f that gets from f splt the hashed values yi and can
further process them to obtain the leakage L1. The following lemma
establishes that this represents a correct translation of split-security as
well.

Lemma 4.5.3. Let Sn denote the class of all UCE sources making
at most n oracle queries and let φ denote the surjective function from
Lemma 4.3.2 . We then have

φ
(
Csplt ∩ Cseed

n

)
= Ssplt ∩ Sn,

and thus, AdvRO-CRI
H,f ,P,σH (D) is negligible for every D ∈ D and every

context (f ,P) ∈ Csplt ∩ Cseed
n if and only if Advuce

H,S,D(·) is negligible for
all (S,D) ∈ (Ssplt ∩ Sn)×D.

Proof (Sketch). First, we show that for every f ∈ Σni and P ∈ Θseed
n

the context (f ◦ f splt,P) is mapped to a UCE source in Ssplt ∩ Sn by
φ. To this end, we define S0 to be the source which initially emulates
P. It first queries z at the interface E and all values x = x1, . . . , xn at
the interface A of P and set L0 = z. The source S1 internally emulates
f . It initially queries retrieve towards f to obtain L1. Whenever f
outputs a query retrieve towards f splt, then S1 answers by using the
next value yi. Now observe that, by definition of Θni, obtaining all
queries x1, . . . , xn from P at interface A on demand or at the beginning
and storing the results y1 = H(k, x1), . . . , yn = H(k, xn) is equivalent.
Thus, it is easy to verify that φ(f ◦ f splt,P) = Splt[S0, S1].

Second, we show that φ(Csplt
n) ⊇ Ssplt ∩Sn, i.e., for every split source

there exists at least one context that maps to this source. It is easy to see
that S0 can be embedded accordingly in a resource P ∈ Θseed

n and S1 in a
filter f ∈ Σni such that φ(f ◦f splt,P) = Splt[S0, S1]. The remaining claim

66 Chapter 4. Context-Restricted Constructions

Converter f splt

Outer Interface
Input: retrieve

call v ← retrieve at int. A of P
if v can be parsed as (x, a) ∈ X ×A then

call y ← (hash, (x ‖ a)) at int. A of ROH
return y

else
return ⊥ at out

Figure 4.9: The definition of the filter f splt. The filter is implicitly
parametrized in the two sets X and A, which should become clear from
the context in all of our uses.

about the advantages immediately follows by Lemma 4.3.4 , concluding
the proof.

4.5.3 Strong-Split Security
Split sources have several limitations. First, the distinguisher cannot
influence the queries at all and, thus, all queries must be solely de-
termined by the honest parties. This prevents, for example, queries
like H(hk, x‖a) where a is a value which can be chosen by the distin-
guisher (e.g. a is transmitted over an insecure channel) even if x is
unpredictable. In the following section, we introduce a generalization
of split-security, called strong-split security, to address this limitation.
Second, split-security does not allow nested queries like H(hk,H(hk, x)).
In Section 4.5.5 we present a further generalization to address this issue
as well.

Remark. Note that the first limitation is not specific to split-security,
but is inherent to the traditional UCE-game. In their work [FM16] on
Interactive Computational Extractors (ICEs), Farshim and Mittelbach
have proposed an alternative relaxation of this issue. In Section 4.5.6

we show that ICE security implies strong-split context-restricted indif-
ferentiability for statistical unpredictability.

4.5. Generalizing Split-Security 67

Converter f s-splt
p

Outer Interface
Input: (retrieve, f1, . . . fp) ∈ IpX×A→H.X

call v ← retrieve at int. A of P
if v can be parsed as (x, a) ∈ X ×A then

for i = 1, . . . , p do
y[i]← fi(x, a)

if ∀i 6= j : y[i] 6= y[j] then
for i = 1, . . . , p do

call z[i]← (hash, y[i]) at int. A of ROH
if z is not set then z ← ⊥p
return z

Figure 4.10: The strong-split filter f s-splt
p for RO-CRI, where IX×A→H.X

denotes the set of all efficiently computable functions from X×A to H.X
that are injective in the first argument. Note that it was pointed out
in [BM14] that the queries of a split-source must be distinct; otherwise
arbitrary information can be communicated to the second stage.

In order to allow the distinguisher to influence the queries while
ensuring that the overall query is still unpredictable from the viewpoint
of the distinguisher, we allow him to apply any injective function on
the preliminary inputs x specified by the first part of the source S0,
which will then be evaluated and passed on to S1. That is, we use the
simple fact that for any injective function f guessing f(xi) is at least
as hard as guessing xi. To formally model this as a context set for
RO-CRI, we use a specific filter f s-splt

p . This filter expects the resource
P to output a sequence of pairs (xi, ai), where xi is intended to be
unpredictable. We will call such a resource P seed in the following. For
each of them the distinguisher can then input p functions f1

i , . . . , f
p
i that

are injective in the first arguments, upon which the filter will output
(f1
i (xi, ai), . . . , fpi (xi, ai)) to the hash oracle and forwards the results

to the distinguisher. A formal definition of is depicted in Figure 4.10 .
The filter f s-splt

p can then be combined with an arbitrary non-interactive
resource to obtain a strong-split RO-CRI context.

Definition 4.5.4. The strong-split RO-CRI context set is the set of
filters and non-interactive resource pairs of which the filter can be

68 Chapter 4. Context-Restricted Constructions

factorized into f s-splt
p followed by an arbitrary filter. Formally,

Cs-splt
p := {f ◦ f s-splt

p | f ∈ Σ} ×Θni.

Analogous to split-security, strong-split security is not a sufficient
restriction to avoid trivial impossibility results. Rather, these notions
are meant to be combined with a notion of unpredictability or reset-
security. However, for strong-split security, requiring the seed to output
distinct unpredictable values is still insufficient to guarantee the security:
for instance, if the resource P outputs (x, a1) and (x+ 1, a2), then the
distinguisher can easily choose f and g such that f(x, a1) = g(x+ 1, a2).
Therefore, we introduce suitable notion of unpredictability in the next
subsection, which when combined with strong-split security presents a
plausible assumption for a hash function family.

4.5.4 Strict Min-Entropy Seeds
We now define an information-theoretic restriction on the seed called
strict min-entropy seeds. Similar to Farshim and Mittelbach [FM16] we
choose to focus on statistical rather than computational unpredictability
to ensure that our notion excludes interactive version of the attack
highlighted in [BFM14].4 More concretely, we consider seeds whose
outputs at interface A consist of pairs (Xi, Ai), with Ai being an auxiliary
value, such that Xi has high average conditional min-entropy given the
leakage Z and all previous queries.
Definition 4.5.5. A strict min-entropy k-bit seed with n outputs is
seed with n outputs (cf. Definition 4.5.2), such that

∀i ≤ n : H̃∞
(
Xi

∣∣ {Xj}j<i, {Aj}j≤i, Z
)
≥ k.

Let Θs−me
n,k ⊂ Θni denote the set of all strict min-entropy k-bit seed with

n outputs. Moreover, let Cs−me
n,k := Σ×Θs−me

n,k denote the set of all strict
min-entropy k-bit contexts.

When combining split-security or strong-split security with strict
min-entropy seeds, the security does not depend on the maximal number
n of values produced by the seed.

4We would like to stress that while split-security was originally introduced for
the computational setting, it is still a natural class to consider even when combined
with a statistical unpredictability notion.

4.5. Generalizing Split-Security 69

Lemma 4.5.6. Let n be polynomially bounded. If H is a Csplt ∩ Cs−me
1,k

RO-CRI secure, then H is also Csplt ∩ Cs−me
n,k RO-CRI secure.

More concretely, let D denote the set of distinguishers. Then there
exists ρ : D ×

(
Csplt ∩ Cs−me

n,k

)
→ D and ψ : Csplt ∩ Cs−me

n,k → Csplt ∩ Cs−me
1,k ,

such that for every (f ,P) ∈ Csplt ∩ Cs−me
n,k we have

AdvRO-CRI
H,f ,P,σ (D) ≤

(
n

2

)
2−k + n ·AdvRO-CRI

H,f′ ,X′,σ(D′)

with D′ := ρ(D, f ,P) and (f ′ ,X′) := ψ(f ,P).

Proof. The proof is completely analogous to the one of Lemma 4.5.7 .

Lemma 4.5.7. Let n be polynomially bounded. If H is Cs-splt
p ∩ Cs−me

1,k
RO-CRI secure, then H is also Cs-splt

p ∩ Cs−me
n,k RO-CRI secure.

More concretely, let D denote the set of distinguishers. Then there
exists ρ : D ×

(
Cs-splt
p ∩ Cs−me

n,k

)
→ D and ψ : Cs-splt

p ∩ Cs−me
n,k → Cs-splt

p ∩
Cs−me

1,k , such that for every (f ,P) ∈ Cs-splt
p ∩ Cs−me

n,k we have

AdvRO-CRI
H,f ,P,σ (D) ≤

(
np

2

)
2−k + n ·AdvRO-CRI

H,f′ ,X′,σ(D′)

with D′ := ρ(D, f ,P) and (f ′ ,X′) := ψ(f ,P).

Proof (Sketch). The proof works along the same lines to the one of
Lemma 4.5.8 below; therefore, we only provide a brief sketch. As a
first hybrid, we introduce a variant that uses a beacon instead of a
random oracle, where a beacon is a resource with the same interface
as the random oracle but always answers using fresh randomness even
for repeated queries. Distinguishing this hybrid system from the ideal
system (that uses the random oracle) can be bounded with the collision
probability for the inputs. Since every of the input has k bits of
conditional min-entropy, given all previous inputs, the collision for any
of them can be bounded with 2−k (cf. the proof below) and there are
at most np queries in total. Hence, the total distinction advantage can
be bounded by

(
np
2
)
2−k.

It remains to bound the distinction advantage between the real
system (using the hash function) and our hybrid system (using the

70 Chapter 4. Context-Restricted Constructions

beacon) using the strong-split security for a single message. This can
be shown by a simple hybrid-argument with n additional hybrids where
the i-th min-entropy seed Xi outputs the i-th message Yi at interface A
and the messages Y1, . . . , Yi−1 as additional leakage at interface E. The
hybrid then answers the first i−1 queries by computing the hash function
itself, the i-th message by actually querying the attached system (that
uses either the hash function or the beacon), and the remaining queries
by uniform random values, simulating the beacon. Defining the resource
X′ to be the one that chooses uniformly at random among X1, . . . , Xn

yields the desired bound: n ·AdvRO-CRI
H,f′ ,X′,σH (D′).

4.5.5 The Repeated Split-Source Context Set
We now further generalize our strong-split source class, to allow for
repeated queries, such as H

(
hk,H(hk, x||1)||2

)
. The key idea is to

introduce a buffer which stores the results obtained from the hash
function. The distinguisher can then choose whether it wants to see
those values, or whether it wants to use them as a new query. The
filter f r-splt

p,r is depicted in Figure 4.11 . The parameter r determines
the maximal allowed nesting depth. Analogously to the strong-split
source, we can then define the Cr-splt

p,r context set based on this filter as
Cr-splt
p,r := {f ◦ f r-splt

p,r | f ∈ Σ} ×Θni.
We now prove that strong-split RO-CRI implies repeated-split RO-

CRI when furthermore restricted to strict min-entropy seeds. This
allows to analyze hash functions only for strong-split security, but use
them in contexts where repeated-split security is needed.

Lemma 4.5.8. Let k′ := min(k, log|H.Y|). If H is Cs-splt
p ∩ Cs−me

n,k′ RO-
CRI secure, then H is also Cr-splt

p,r ∩ Cs−me
n,k RO-CRI secure.

More concretely, let D denote the set of distinguishers. Then there
exists a translation of the distinguisher ρ : D ×

(
Cr-splt
p,r ∩ Cs−me

n,k

)
→ D

and a translation of the context ψ : Cr-splt
p,r ∩ Cs−me

n,k → Cs-splt
p ∩ Cs−me

n,k′ , such
that for every (f ,P) ∈ Cr-splt

p,r ∩ Cs−me
n,k we have

AdvRO-CRI
H,f ,P,σ (D) ≤

(
npr

2

)
2−(k′−1) + r ·AdvRO-CRI

H,f′ ,X′,σ(D′)

with D′ := ρ(D, f ,P) and (f ′ ,X′) := ψ(f ,P).

4.5. Generalizing Split-Security 71

Converter f r-splt
p,r

Initialization
b← ⊥p, c← 0

Outer Interface
Input: get
b′ ← b
b← ⊥p
return b′

Input: (query, f1, . . . , fp) ∈ IpX ,A→H.X
c← 1
call v ← retrieve at int. A of P
if v can be parsed as (x, a) ∈ X ×A then

for i = 1, . . . , p do
y[i]← fi(x, a)

if ∀i 6= j : y[i] 6= y[j] then
for i = 1, . . . , n do

call b[i]← (hash, y[i]) at int. A of ROH
else

b← ⊥p
else

b← ⊥p

Input: (repeat, f1, . . . , fp) ∈ Ip
H.Y→H.X

c← c+ 1
if c ≤ r ∧ b 6= ⊥p then

for i = 1, . . . , p do
call b[i]← (hash, fi(b[i])) at int. A of ROH

else
b← ⊥p

Figure 4.11: The filter f r-splt
p,r from the repeated split-source context set.

Proof. While this lemma can intuitively be proven using a simple hybrid
argument, it turns out to be quite technical. The proof can be found in
Appendix A.1 .

4.5.6 The Relation Between ICE and Strong-Split
RO-CRI

In this section, we discuss the relation between RO-CRI and the ICE
framework introduced in [FM16]. More concretely, we show that
statistical-unpredictable ICE security implies strong-split RO-CRI, as

72 Chapter 4. Context-Restricted Constructions

phrased in Theorem 4.5.9 . Using this relation between the two frame-
works, we especially inherit the random oracle feasibility result from
the ICE framework.

The reverse direction, whether strong-split RO-CRI implies some
natural notion of ICE, remains an interesting open problem. In general,
there seems to be no natural mapping from ICE to RO-CRI. This can be
explained by the fundamentally different motivation behind introducing
this two generalizations of UCE: ICE tried to allow interaction by making
the two stages of UCE more symmetric, whereas RO-CRI exploits the
asymmetry of UCE to separate them even further into the protocol of
the honest party and the regular distinguisher from indifferentiability.

In terms of random-oracle feasibility, this places RO-CRI as an
intermediate notion between the original UCE notion and the stronger
ICE notion, while it is still open whether a true separation between
those frameworks exists.

Theorem 4.5.9. Let H denote a keyed hash function where the key-
space is exponential in the security parameter. If H ∈ ICE[Csup], then H
is Cs-splt

p ∩ Cs−me
n,k context-restricted indifferentiable from a random oracle

for any polynomial n and p, and k such that the guessing probability is
negligible.

Proof. We sketch a proof that for the fixed simulator σH , every context
(f ,P) ∈ Cs-splt

p ∩ Cs−me
n,k and distinguisher D can be turned into a pair of

equivalent ICE distinguishers D1 and D2. Let D1 internally emulates
the distinguisher D and works as follows:

• It initially chooses the hash key hk uniformly at random (as σH)
and writes it into the buffer using a Write query. This is the
only Write query D1 does.

• In every round, it uses obtains the answer from L2 and passes
this to the distinguisher D to obtain the next query. According
whether D queries the interface A with the function f or obtains
the leakage at interface E, it produces an appropriate output L1,
either (A, f) or (E).

• If the distinguisher D outputs the decision bit, D1 outputs the
same bit.

4.5. Split-Security of Merkle-Damgård 73

The distinguisher D2 internally emulates the context (f s-splt
p ,X) and

works as follows:

• In every round it inspects the value L1.

– If L1 is of the form (A, f), it passes f to the internal emulation
of the context, to obtain the value x that would be queried to
the hash function. It then writes x to the buffer and queries
the hash function. The resulting value y is returned as L2.

– If L2 is of the form (E), then it queries the interface E of the
internal resource X and returns the result as L2.

• It always sets b2 = 0.

It is easy to see that the ICE game now behaves exactly the same
as the RO-CRI system. Moreover, the queries of D2 are exactly as
unpredictable given the state and randomness of D1 as are the queries in
the RO-CRI system given access to the interface E. Finally, if the hash
key hk is unpredictable, then none of the queries of D1 can be predicted
given the complete state and randomness of D2. This concludes the
proof.

4.6 Split-Security of the Merkle-Damgård
Construction

4.6.1 Motivation
Indifferentiability is widely used to prove the security of hash function
constructions. Since context-restricted constructions are essentially a
refined version of indifferentiability, it is hence natural to consider the
RO-CRI security of hash functions as well.

It is easy to show that any hash function construction that is secure
according to the traditional indifferentiability notion is also reset-UCE
secure if the underlying compression function is reset-UCE secure. On
the other hand, for split security no corresponding result has been
proven so far. In the following we investigate the split-security of the
Merkle-Damgård construction using the RO-CRI framework. While

74 Chapter 4. Context-Restricted Constructions

ideally one could prove that the Merkle-Damgård construction is split
secure if the compression function is so, or that the Merkle-Damgård
construction is strong-split secure if the compression function is so, we
will prove a slightly weaker result:

Consider the Merkle-Damgård construction that splits the message
into blocks of length m. We show that the Merkle-Damgård construction
is split-secure for inputs having at least one block with k bits of min-
entropy, if the compression function is strong-split secure for inputs with
min(k,m) bits of min-entropy.

4.6.2 Formalizing the Theorem
In order for our proof to go through, we require that at least one of
the blocks has high min-entropy and not just the overall message has,
as in the definition of strict min-entropy seeds. Moreover, we require
that this block has k bits of min-entropy given all subsequent blocks.
In Lemma 4.6.4 we then show that having a high min-entropy density,
i.e., the fraction between the min-entropy and the message length, is a
sufficient criteria for this. First, however, let us formally introduce this
context set.

Definition 4.6.1. For a block length ` ∈ N+, let Pad` denote the usual
padding scheme of the Merkle-Damgård scheme, that is Pad` : {0, 1}∗ →
({0, 1}`)+ that pads a message x by first appending zeros up to a multiple
of the block length `, and then appending an encoding of the number
of zeros appended as a last block. Moreover, for X ∈ {0, 1}∗, we denote
by Xi the i-th block of Pad`(X).

Definition 4.6.2. A non-interactive resource is said to be a k out of
`-bit strict min-entropy block, denoted P ∈ Θme−blk

k,`,b,n , if P ∈ Θseed
n with⋃

i≤(b−1)`{0, 1}i×A as the output domain of interface A, and there exist
random variables C1, . . . , Cn such that Ci ∈ {1, . . . , |Pad`(Xi)|

` } and

∀i ≤ n : H̃∞
(
XCi
i

∣∣ {Xj
i }j>Ci , {Xj}j<i, {Cj}j≤i, {Aj}j≤i, Z

)
≥ k.

Moreover, let Cme−blk
k,`,b,n := Σ×Θme−blk

k,`,b,n .

Remark. Note, that contrary to the classical indifferentiability of the
Merkle-Damgård construction, we do not require Pad to be prefix-free:

4.6. Split-Security of Merkle-Damgård 75

when combined with the strict min-entropy condition H(X) cannot be
extended to H(Pad(X)||Y), as for Pad(X)||Y having high min-entropy
given X, Y must have so, and thereby the well-known length-extension
attack is excluded. Whether a more advanced construction with a
finalization function, e.g. HMAC, could be proven secure for a more
relaxed context set remains an interesting open problem. We now phrase
our main result of this section.

Using the definition of k out of `-bit strict min-entropy block, we
can now formally state our theorem about the split-security of the
Merkle-Damgård construction.

Theorem 4.6.3. Let h : {0, 1}m+` → {0, 1}m denote a fixed input-
length compression function, H : {0, 1}∗ → {0, 1}m denote the hash
function obtained by first padding the message using Pad` and then
applying the Merkle-Damgård scheme using h, and let k′ := min(k,m).
Then, if h is Cs-splt

1 ∩ Cs−me
1,k′ RO-CRI secure, then H is Csplt ∩ Cme−blk

k,`,b,n

RO-CRI secure for any polynomial b and n.
More explicitly, there exists ρ1, ρ2 : D ×

(
Csplt ∩ Cme−blk

k,`,b,n

)
→ D and

ψ1, ψ2 : Csplt ∩ Cme−blk
k,`,b,n → C

s-splt
1 ∩ Cs−me

1,k′ such that for all distinguishers
D and all contexts (f ,P) ∈ Csplt ∩ Cme−blk

k,`,b,n we have

AdvRO-CRI
H,f ,P,σ (D) ≤

(
n

2

)
·2−k+n ·

(
b

2

)
·2−(k′−1) +nb ·AdvRO-CRI

h,f′ ,X′,σ′(D′)

+ n ·AdvRO-CRI
h,f′′ ,X′′,σ′′(D′′)

with D′ := ρ1(D, f ,P), D′′ := ρ2(D, f ,P), (f ′ ,X′) := ψ1(f ,P), (f′′ ,X′′) :=
ψ2(f ,P), and σ′ and σ′′ denoting slightly modified variants of σ.

4.6.3 Proof of Theorem 4.6.3

Let us first provide an intuitive argument for the case of a single message.
Assume that the message y being hash by the Merkle-Damgård scheme
is split into b blocks, out of which at least one has k bits of min-entropy.
Let c denote the index of this block, i.e., yc has at least k bits of
min-entropy. Hence, according to our assumption on the compression
function, the output q of this block cannot be distinguished from the
output of a random oracle, as depicted in Figure 4.12 . Given that this

76 Chapter 4. Context-Restricted Constructions

real
0 h

y1

h

yc−1

h

yc

h

yc+1

h

yb

hybrid
0 h

y1

h

yc−1

ro

yc

q
h

yc+1

h

yb

ideal
0 h

y1

h

yc−1

ro

yc

ro

yc+1

ro

yb

Figure 4.12: The real and the ideal setting for the Merkle-Damgård
construction if block c has high min-entropy.

output is just a uniformly random value of length m, by induction,
neither can be the output of any subsequent block be distinguished from
the output of a random oracle. Therefore, the final output cannot be
distinguished from the uniform random value RO(X). We now proceed
with the formal proof of Theorem 4.6.3 .

Proof of Theorem 4.6.3 . Using Lemma 4.5.6 it suffices to show

AdvRO-CRI
H,f ,P,σ (D) ≤

(
b

2

)
· 2−(k′−1) + b ·AdvRO-CRI

h,f′ ,X′,σ′(D′)

+ AdvRO-CRI
h,f′′ ,X′′,σ′′(D′′)

for all distinguishers D and all contexts (f ,P) ∈ Csplt ∩ Cme−blk
k,`,1 .

Next, observe that for any message y ∈
⋃
i≤(b−1)`{0, 1}i, applying the

padding Pad` results in a message that has at most b blocks. Without
loss of generality, we assume in the following that there are always
exactly b blocks.

Given any k out of `-bit min-entropy block seed P with a single
output, we first introduce two k′-bit min-entropy seeds X′ and X′′. Note
that the function ψ1 and ψ2 are just mappings from one context to

4.6. Split-Security of Merkle-Damgård 77

another one relating the two problems and, in contrast to the reduction
translating the distinguisher, do not need to be efficiently computable.
Therefore, it is sufficient to know that such a random variable C from
Definition 4.6.2 exists for the seed X.

Definition of X′:
Let X′ denote the resource that samples (y, z) using the same
distribution as P, applies the padding, and splits it into the
blocks y1, . . . , yb. Then, it sample the random variable C to
obtain the index c. Finally, it outputs the pair (a′, y′) with
a′ = (y0, y1, . . . , yc−1) and y′ = yc at interface A and z′ =
(z, c, yc+1, . . . , yb) at interface E.

Definition of X′′:
Let X′′ denote the resource that samples (y, z) using the same
distribution as P, applies the padding, and splits it into the
blocks y1, . . . , yb. Then, it sample the random variable C to
obtain the index c and chooses q ∈ {0, 1}m uniformly at random,
outputs the pair (a′, y′) := (⊥, q) at interface A, and the value
z′ := (z, c, yc+1, . . . , yb) at interface E.

Observe that X′ is a k ≥ k′ bit (strict) min-entropy seed, since X is
k out of n-bit min-entropy block seed. Similarly, since q is chosen
independently of all other random variables, the seed X′′ is a m ≥ k′ bit
strict min-entropy seed. Moreover, both of them output only a single
value, i.e., X′,X′′ ∈ Θs−me

1,k′ .
Next, we briefly sketch the two simulators σ′ and σ′′: they both

internally run σ. Whenever σ request for the leakage z of the seed, they
query the leakage z′ at the corresponding inner interface and return the
first component z to σ.

Now, we introduce two converter systems C′ and C′′ that at the
inside interface connect to both the interface A and the interface E of
the connected system, and at the outside interface emulates both the
interfaces as well.

The system C′ works as follows:
First it obtains hk and z′ = (z, c, yc+1, . . . , yb) at the interfaces
E.H and E.X of the connected system. When receiving the input
retrieve at the outside interface A, it outputs (retrieve, f)

78 Chapter 4. Context-Restricted Constructions

at the inside interface A, where f is the function that on input
(yc, a′) first splits a′ = (y0, . . . , yc−1), then computes the prefix
p = hhk(. . . hhk(hhk(0||y0)||y1) . . . ||yc−1), and finally returns p||yc.
Since both p and yc are of fixed length, this function is injective in
the first argument. When obtaining the returned value y′, it then
computes the suffix s = hhk(. . . hhk(hhk(y′||yc+1)||yc+2) . . . ||yb)
and returns s at the outside interface A. When receiving the input
retrieve at either the interface E.H or E.X it returns hk or z,
respectively.

The system C′′ works as follows:
First it obtains hk and z′ = (z, c, xc+1, . . . , xb) at the interfaces
E.H and E.X of the connected system. When receiving the input
retrieve at the outside interface A, it first outputs (query, f) at
the inside interface A, where f is the function that on input (q,⊥)
returns q||yc+1. This function is injective in the first argument.
Then, for i = c + 2, . . . , b it outputs (repeat, f) at the inside
interface A, where f is the function that on input (x) returns x||yi.
Finally, it outputs get at the inside interface A and returns the
obtained value at the outside interface A. When receiving the
input retrieve at either the interface E.H or E.R it returns hk or
z, respectively.

It is easy to verify, that the composed system C′f s-splt
p [h,X′] at the

interface A outputs H(y) and, thus, we have the equivalence f splt[H,P] ≡
C′f s-splt

p [h,X′]. In the following f r-splt
1,p denote the filter introduced in

Section 4.5.5 . It is then easy to verify that the final output of the
composed system C′′f r-splt

1,p [ro,X′′]σ′′ at the interface A is just a uniform
random value independent of hk and z. Hence, this system behaves
equivalently to f splt[RO,X]σ that outputs a single uniform random value
as well. In short, we have f splt[RO,X]σ ≡ C′′f r-splt

1,p [ro,X′′]σ′′.
Using those two equivalences, and by introducing two hybrids

C′f s-splt
1 [ro,X′]σ′ and C′′f r-splt

1,b [h,X′′σ′′, we can rewrite the distinction
advantage as:

∆D(f splt[H,P], f splt[RO,P]σ) = ∆D(C′f s-splt
1 [h,X′],C′f s-splt

1 [ro,X′]σ′)
+ ∆D(C′f s-splt

1 [ro,X′]σ′,C′′f r-splt
1,b [h,X′′])

+ ∆D(C′′f r-splt
1,b [h,X′′],C′′f r-splt

1,b [ro,X′′]σ′′).

4.6. Split-Security of Merkle-Damgård 79

Next, observe that the systems C′f s-splt
1 [ro,X′]σ′ and C′′f r-splt

1,b [h,X′′]σ′′
both implement exactly the same hybrid system depicted in Figure 4.12 :
The system C′f s-splt

1 [ro,X′]σ′ actually computes this value by first using
the compression function h on the blocks 1 to c− 1, then uses the fixed
input size random oracle on the block c, and finishes by using h on
the remaining blocks. However, note that the value output by ro is
just a uniform random value, as ro is private and not used beside this
one query. The system C′′f r-splt

1,b [h,X′′] skips the initial computes and
chooses q uniformly at random (in X′′). As a result, we can simplify the
distinction advantage to

∆D(f splt[H,P], f splt[RO,P]σ) = ∆DC′(f s-splt
1 [h,X′], f s-splt

1 [ro,X′]σ′)

+ ∆DC′′(f r-splt
1,b [h,X′′], f r-splt

1,b [ro,X′′]σ′′).

Applying the definition of AdvRO-CRI
H,f ,P,σ (D), as well as Lemmas 4.5.3

and 4.5.8 (the latter with r = b, n = 1, and p = 1), concludes the
proof.

4.6.4 A Sufficient Condition Based on Min-Entropy
Splitting

To conclude this section, we now present a sufficient condition for a seed
to satisfy Definition 4.6.2 based on the length of the message and its
overall min-entropy. More concretely, we prove that if a message is split
into b blocks of size n, and has overall min-entropy of k bits, then there
exists a block with k

b − log2(b) bits of min-entropy, given all succeeding
blocks. In order to more closely resembles the chain rule of Shannon
entropy, the proposition is stated with conditioning on all preceding
message X1 . . . XC−1 instead of all succeeding ones. The converse result
can easily be obtained by simply relabeling the blocks.

Lemma 4.6.4. Let X1, . . . , Xb and Z be random variables (over possibly
different alphabets) with H̃∞(X1 . . . Xb |Z) ≥ k. Then, there exists a
random variable C over the set {1, . . . , b} such that

H̃∞(XC |X1 . . . XC−1CZ) ≥ k
b − log2(b).

Proof. Let YC := (X1, . . . , XC−1), with Y0 denoting the empty string λ.

80 Chapter 4. Context-Restricted Constructions

Second, let for every z in the support of Z,

pz := max
x1,...,xb

PX1...Xb|Z(x1, . . . , xb, z),

that is, H̃∞(X1 . . . Xb |Z) = − logEz[pz]. Moreover, once C is defined
(see below), let

qz := Ec,y[max
x

PXC |CYCZ(x, c, y, z) |Z = z]

and note that H̃∞(XC |CYCZ) = − logEz[qz]. We now proceed by
showing that for all z, qz ≤ b · p1/b

z . To this end, we extend the
probability distribution PX1...XbZ by defining the random variable C as
follows:

C =

1 if PX1|Z(x1, z) < p
1/b
z

2 else if PX1X2|Z(x1, x2, z) < p
2/b
z

...
b− 1 else if PX1...Xk−1|Z(x1, . . . , xb−1, z) < p

(b−1)/k
z

b else.

Observe that with

Yc,z := {y | PCYC |Z(c, y, z) > 0}
Xc,z,y := {x | PXCCYC |Z(x, c, y, z) > 0}

4.6. Split-Security of Merkle-Damgård 81

we can bound qz as follows:

qz = Ec,y[max
x

PXC |CYCZ(x, c, y, z) |Z = z]

=
b∑
c=1

∑
y∈Yc,z

PCYC |Z(c, y, z) · max
x∈Xc,z,y

PXC |CYCZ(x, c, y, z)

=
b∑
c=1

∑
y∈Yc,z

PCYC |Z(c, y, z) · max
x∈Xc,z,y

PXCCYC |Z(x, c, y, z)
PCYC |Z(c, y, z)

=
b∑
c=1

∑
y∈Yc,z

max
x∈Xc,z,y

PXCCYC |Z(x, c, y, z)

≤
b∑
c=1

∑
y∈Yc,z

max
x∈Xc,z,y

PXCYC |Z(x, y, z).

We now further bound this term using a case distinction on c. First,
consider the case c = 1. Since Y1 = λ is constant, we have Y1,z ⊆ {λ}
and PX1Y1|Z(x, λ, z) = PX1|Z(x, z). Moreover, x ∈ X1,z,λ implies
PX1C|Z(x, 1, z) > 0, which by the definition of C in turn implies
PX1|Z(x, z) < p

1/b
z . Hence∑

y∈Y1,z

max
x∈X1,z,y

PX1Y1|Z(x, y, z) ≤ max
x∈X1,z,λ

PX1|Z(x, z) ≤ p1/b
z .

For all i ∈ {2, . . . , b − 1} observe that by the definition of C we have
that Xi,z,y ⊆

{
x | PXiYi|Z(x, y, z) < p

i/b
z

}
and Yi,z ⊆

{
y | PYi|Z(y, z) ≥

p
(i−1)/b
z

}
. From the latter we can conclude that |Yi,z| ≤ 1

p
(i−1)/b
z

and,
hence, we obtain

∑
y∈Yi,z

max
x∈Xi,z,y

PXiYi|Z(x, y, z) ≤
∑
y∈Yi,z

pi/bz ≤
p
i/b
z

p
(i−1)/b
z

= p1/b
z .

Finally, for c = b, we have that Yb,z ⊆ {y | PYb|Z(y, z) ≥ p
(b−1)/b
z }

and, therefore, we obtain |Yb,z| ≤ 1
p

(b−1)/b
z

. Using the definition of
Yb = (X1, . . . , Xb−1) and pz, we get maxx∈Xb,z,y PXbYb|Z(x, y, z) ≤ pz

82 Chapter 4. Context-Restricted Constructions

for every y = (x1, . . . , xb−1). Hence,∑
y∈Yb,z

max
x∈Xb,z,y

PXbYb|Z(x, y, z) ≤
∑
y∈Yb,z

pz ≤
pz

p
(b−1)/b
z

= p1/b
z

as well. In summary,

qz = Ec,y[max
x

PXC |CYCZ(x, c, y, z) |Z = z]

≤
b∑
c=1

∑
y∈Yc,z

max
x∈Xc,z,y

PXCYC |Z(x, y, z)

≤
b∑
c=1

p1/b
z

≤ b · p1/b
z

Using the monotonicity of the expected value, Jensen’s inequality, and
the assumed inequality H̃∞(X1 . . . Xb |Z) ≥ k yields

2−H̃∞(XC |CYCZ) = Ez[qz] ≤ Ez[b · p1/b
z] ≤ b · Ez[pz]1/b

= b ·
(

2−H̃∞(X1...Xb|Z)
)1/b

≤ 2log b · 2−k/b = 2−(k/b−log b)

concluding the proof.

This lemma is a generalization of the randomized chain rule proven
by the authors of [DFR+07] (similar variants exists also in [BK12 ;
Wul07]) stating that there exists a binary random variable C such that
H∞(X1−CC) ≥ H∞(X0X1)/2. Note that the main difference of our
result is, that it conditions on all previous blocks, i.e., it essentially
represents the min-entropy equivalence of the strong chain rule H(X0) +
H(X1 |X0) = H(X0X1) instead of H(X0) +H(X1) ≥ H(X0X1).

Chapter 5

Overcoming the
Commitment Problem

In this chapter, we propose a novel type of specifications that over-
comes the so-called simulator commitment problem. More concretely,
we introduce specifications that formalize interval-wise guarantees, i.e.,
guarantees that hold in between two events. The specifications are
formalized as relaxations of an (overly) idealized one, where the relax-
ation admits arbitrary behavior, i.e., waives all guarantees, outside the
interval.

5.1 Introduction

5.1.1 Motivation
One of the most fundamental obstacle hindering the adoption of compos-
able security definitions is the so-called simulator commitment problem,
or commitment problem for short. It mainly arises when considering
adaptive security. In a nutshell, it describes the simulator’s inability to
explain some of its previous choices the moment a party gets corrupted.
More concretely, consider the example of two parties securing their
communication using symmetric encryption. The intuition is that the
adversary does not learn the messages until either of the parties gets

84 Chapter 5. Overcoming the Commitment Problem

corrupted, thereby revealing the key. Before, the adversary should learn
at most the length. As a result, the simulator, in the first phase, has
to output a fake ciphertexts independent of the real messages. For any
semantically secure encryption scheme he can actually do so. This,
however, commits him on those fake ciphertexts. At the moment a
party gets corrupted, the simulator then needs to be able to explain
those ciphertexts by outputting a matching encryption key. Even if he
learns all the previous messages, he will not be able to do so for regular
encryption schemes. Note, however, that the commitment problem is
not restricted to adaptive corruptions only. Similar issues also arise,
for instance, in the context of password-based security [DGMT17] or
identity-based encryption [HMM15], where it has been shown that due
to this commitment problem the standard game-based notions do not
induce the expected corresponding composable statements.

On a general level, this raises the fundamental question whether
such impossibility results actually indicate a security issue, and hence
protocols not satisfying the stronger composable definitions should
not be used, or whether they present an artifact of the framework.
Especially for the commitment problem, the common understanding
is that the latter is true. As a consequence, the commitment problem
is commonly dealt with by either reverting to composable security
with static corruptions only, or by simply retracting to standalone
game-based definitions. Alternatively, in work where modularity and
composability is crucial, one often simply accepts (unrealistic) strong
setup assumptions, such as a common reference string (CRS) to avoid
the commitment problem. Moreover, the corresponding protocols are
often less efficient than their standalone counterparts.

As a result, a number of approaches to overcome the issue have
been proposed [CK02 ; Pas03 ; PS04 ; BDHK06 ; BDH+17]. The ma-
jority of them, however, introduces an intermediate notion (between
standalone security and the traditional simulation-based composable
security notion). Thus, to achieve those notions, one still relies on
strong setup assumptions and/or less efficient protocols, when compared
to the classical standalone secure protocols. Moreover, most existing
approaches are intrinsically motivated from a technical point of view—
weakening the simulation-based notion (e.g., UC) sufficiently until the
impossibilities can be evaded—leading to rather technical definitions
with sometimes unclear semantics.

5.1. Introduction 85

Ultimately, this poses the question: how can we express the security
properties achieved by protocols for which so far only standalone security
notions are known composably?

5.1.2 Contributions
Interval-wise guarantees. In this work, we propose an alternative
solution to the simulator-commitment problem that is aimed at express-
ing the guarantees of regular schemes within a composable framework.
More concretely, we introduce a novel type of specification that avoids
the commitment problem while providing a number of distinct benefits.
First, it provides a clean semantics of how the guarantees should be
interpreted. Second, it holds in any environment, just as any statement
in the CC framework. Third, it is equipped with a composition theorem.

Since the commitment problem usually occurs at a very specific
point of the protocol execution, such as when a party gets corrupted,
where the security guarantees of the protocol anyway inherently change,
our novel specification notion is centered around the very natural idea
of formalizing guarantees that hold in a certain interval (between two
events). That is, our notion for instance allows to formalize separate
security guarantees before and after the corruption event. In contrast to
existing simulation-based notions, we thereby only require the simulation
to work within each interval, not forcing the simulation to be consistent
between the intervals (which causes the initial commitment issues). We
discuss how the security guarantees provided by our notion should be
interpreted, when stronger notions might still be desirable, and how our
notion fits into the space of static versus adaptive security.

On a technical level, we formalize interval-wise guarantees as a novel
type of relaxation of an (overly) idealized specification. We carefully
consider the subtleties arising when defining these relaxations and show
how they interact with the other aspects of the framework. Finally, we
present the respective composition theorem, that actually supersedes
all the existing ones, and in particular allows to syntactically combine
multiple such interval-wise construction statements, or an interval-wise
one with a regular construction statement.

Applications. As a third contribution, we apply our methodology to
several examples. First, we consider the encrypt-then-MAC paradigm in

86 Chapter 5. Overcoming the Commitment Problem

a setting where the keys can adaptively leak to the adversary, stylizing
adaptive passive corruptions. Using our interval-wise guarantees, we
obtain a simple composable security definition thereof without the need
for non-committing encryption. More concretely, we consider the follow-
ing three properties. First, we require the messages to be confidential
as long as neither the encryption nor the authentication key leaked.
(An IND-CPA secure scheme cannot guarantee confidentiality without
authenticity.) In our definition, this is phrased as the construction of a
secure channel up to that point. Second, between the exposure of the
encryption key and the authentication key, we require communication
to still be authentic, i.e., an authenticated channel to be constructed.
Finally, after the encryption key has been exposed, we still require
correctness.

As a second application, we present a composable formalization of
information-theoretically binding commitment schemes realizable in
the plain model. We then show how, based on such a commitment
scheme, Blum’s protocol constructs a composable coin-toss notion. Ap-
plying composition then directly implies that this formalization can be
achieved in the plain model as well. While the resulting specification is
obviously too weak to serve as a common reference string, it guarantees
unbiasedness. Hence, it is provides a good enough type of randomness
resource whenever unbiasedness is sufficient, in particular formalizing
and formally validating the intuitive-level argumentation about flipping
a coin over the telephone of the corresponding papers of that time.

Finally, we consider the composable guarantees of identity-based
encryption. We revisit the result by Hofheinz, Matt, and Maurer
[HMM15] that shows the standard ind-id-cpa notion to be too weak
when considering a traditional composable statement based on the
existence of a single simulator, even when considering static corruptions,
due to the commitment problem. Furthermore, the authors have shown
that the same weaker construction that actually can be achieved, could
also be achieved by a weaker game-based notion ind-id1-cpa, modeling
so-called lunch-time attacks. We refute their results in the following
way: Based on interval-wise guarantees we formalize a composable
specification of IBE that corresponds exactly to the standard ind-id-cpa
notion.

5.1. Introduction 87

5.1.3 Related Work

A number of approaches have been proposed in order to circumvent
the aforementioned issues of composable security. First, Canetti and
Krawczyk proposed the notion of non-information oracles [CK02] within
the UC-framework. A non-information oracle is essentially a game-
based definition embedded into an ideal functionality. For instance,
rather than saying that an encryption scheme should realize a secure
channel that only leaks the length, the respective functionality leaks
the output of the non-information oracle, which is required to satisfy a
CPA-like definition. While this circumvents the commitment problem,
there are two drawbacks. First, it weakens composition by requiring
explicit reductions to the embedded games in the security proof of the
higher-level protocols using the functionality. Second, for each ideal
functionality a different type of non-information oracle needs to be
defined. As a consequence, the question of the “right” non-information
oracle re-arises, just like when defining a security game.

Second, a line of work considers super-polynomial simulators [Pas03 ;
PS04 ; BDH+17]. The initial proposal by Pass [Pas03] considered
sub-exponential simulators and polynomially bounded environments.
This implies, however, that the simulator cannot be absorbed into
the environment, ceding some of the most fundamental composition
properties of the UC-framework. The later works by Prabhakaran and
Sahai [PS04] and Broadnax et al. [BDH+17] empower the simulator in a
more controlled manner, preserving most natural composition properties.
Their adoption, however, still suffers from being rather technical, and
moreover, still quite limited in the number of issues a more powerful
simulator can overcome. For instance, when considering a PRG whose
seed might leak, even an all powerful simulator will not be able to
explain a truly randomly chosen output with an appropriate seed.

Finally, Backes, Dürmuth, Hofheinz, and Küsters [BDHK06] pro-
posed an approach where the real-world resource would just disallow
certain activation sequences by the environment that were otherwise
impossible to simulate. While this avoids the complications of the other
approaches, it scarifies the evident semantics of composable security
notions by excluding certain—deemed artificial—attacks. A similar
approach has recently been used by Jost, Maurer and Mularczyk in
[JMM19b].

88 Chapter 5. Overcoming the Commitment Problem

5.1.4 The Constructive Cryptography Setting

This chapter is based on Constructive Cryptography with events, as
introduce in Chapter 3 . Other more concrete aspects, such as the set of
involved parties, are specified for each specific example separately.

5.2 Interval-Wise Guarantees: Motivation
and Intuition

In this section, we outline the general approach, and its motivation,
proposed in this work, before we deep dive into the technicalities in
Section 5.3 . In particular, we believe that the conceptual contributions
are of interest independent from the exact mathematical formalization.

5.2.1 A Motivating Example

Recall the example from Section 2.2.6 , where two parties Alice and Bob,
wanted to communicate authentically over the Internet. For this section,
assume that they also want to achieve confidentiality. If they have a pre-
shared secret key available, e.g. from running a key agreement protocol,
then it is well known that the encrypt-then-MAC paradigm achieves
the desired goal. Assuming independent keys for the encryption and
MAC scheme, this construction is secure if the underlying encryption
scheme is IND-CPA secure and the MAC scheme is weakly unforgeable.

What, however, if we assume that in reality the keys to not be one
hundred percent secure? Intuitively one should expect the scheme to
remain secure until either of the keys leak to an adversary, and the
security properties then to gracefully downgrade accordingly. More con-
cretely, there is little reason to doubt the following security guarantees
should be provided by the scheme:

1. until either of the keys leak, the scheme should provide both
confidentiality and authenticity;

2. if only the encryption key leaked so far, then the scheme should
still provide authenticity;

5.2. Interval-Wise Guarantees: Motivation & Intuition 89

3. once the MAC key leaked, the scheme should at least still provide
correctness, i.e., allow the parties to communicate in the absence
of an active network attack.

(Note that if first the MAC key gets exposed, then a scheme that is only
IND-CPA secure might not provide full confidentiality.)

5.2.2 A Naive Attempt
While the encrypt-then-MAC paradigm has composably proven to be
sound in a context where both parties are honest and the keys are secure
(e.g. [CK02 ; MT10]), extending those results to deal with key exposures
has turned out to be surprisingly strenuous.

Intuitively, one might model the achieved security guarantees as an
secure channel with downgradable security, which waives confidentiality
and authenticity once the respective keys leaked. The protocol should
then construct such a channel from an insecure channel and two leakable
keys, for authentication and encryption, respectively. To this end, we
extend the resources introduced in Section 2.2.6 accordingly. First,
we now assume two leakable keys AuthKey and EncKey, rather than
the perfectly secure one in Section 2.2.6 . Second, we now consider an
authentic channel AuthChDg with downgradable security in response
to the key-leakage events. Analogously, we consider a secure channel
SecChDg with downgradable security, and finally we assume an insecure
channel InsecCh. A formal description of the resources can be found in
Figure 5.1 .

First, consider authentication, i.e., the construction of AuthChDg
from InsecCh and AuthKey. Indeed, one can show the following result.

Proposition 5.2.1. Let AuthChDg denote the authenticated channel
that degrades its security once the respective key is leaked, as formally
defined in Figure 5.1 . Then, there exists a simulator σMAC such that[

AuthKey, InsecCh
] πMAC,σMAC,εMAC−−−−−−−−−−−→

sim
AuthChDg,

where εMAC denotes a simple reduction to the MAC-forgery game.

Proof. This is a well-known result, which has for instance been sketched
in [Mau11].

90 Chapter 5. Overcoming the Commitment Problem

Resource InsecCh

Initialization
MA[·]← ⊥
mB ← ⊥
n← 0

Interface A
Input: (send,m)
n← n+ 1
MA[n]← m
output ok

Interface B
Input: receive

output mB

Interface E
Input: (leak, i)

output MA[i]

Input: (inject,m)
mB ← m
output ok

Interface F
Input: (deliver, i)
mB ←MA[i]
output ok

Resource AuthChDg

Initialization
MA[·]← ⊥
mB ← ⊥
n← 0

Interface A
Input: (send,m)
n← n+ 1
MA[n]← m
output ok

Interface B
Input: receive

output mB

Interface E
Input: (leak, i)

output MA[i]

Input: (inject,m)
if E leaked

AuthKey then
mB ← m

else
mB ← ⊥

output ok

Interfaces {E, F}
Input: (deliver, i)
mB ←MA[i]
output ok

Resource SecChDg

Initialization
MA[·]← ⊥
mB ← ⊥
n← 0

Interface A
Input: (send,m)
n← n+ 1
MA[s]← m
output ok

Interface B
Input: receive

output mB

Interface E
Input: (leak, i)

if MA[i] = ⊥ then
output ⊥

else if E leaked
EncKey ∨ E

leaked
AuthKey

then
output MA[i]

else
output |MA[i]|

Input: (inject,m)
if E leaked

AuthKey then mB ← m
else mB ← ⊥
output ok

Interfaces {E, F}
Input: (deliver, i)
mB ←MA[i]
output ok

Resource XKey
for X ∈ {Auth, Enc}

Initialization
k � K

Interface i, i ∈ {A, B}
Input: fetch

output k

Interface E
Input: read

if E leaked
XKey then
output k

else
output ⊥

Figure 5.1: The resources involved in the encrypt-then-MAC example.
Observe how the authenticated and the secure channel degrade their
guarantees once the respective keys have been leaked.

5.2. Interval-Wise Guarantees: Motivation & Intuition 91

However, once we turn our attention towards the construction step
from Section 2.2.6 —using encryption to achieve confidentiality—we
run into the so-called simulator commitment problem of composable
security when considering leakable keys. This is expressed by the
following proposition.

Proposition 5.2.2. Let SecChDg denote a secure channel that degrades
the respective guarantees once the keys have been exposed, as depicted
in Figure 5.1 . For any (efficient) simulator σENC, and reduction εCPA
to the IND-CPA game, we have

[
EncKey,AuthChDg

]
6πENC,σENC,εCPA−−−−−−−−−−→

sim
SecChDg,

i.e., IND-CPA security does not suffice.

Proof (Sketch). In the first phase, the simulator has to produce, without
knowing the message, fake ciphertexts c1, c2, . . . , cn that look indistin-
guishable from the real one. For an IND-CPA secure scheme, he can
easily do so by encrypting an arbitrary message of the correct length.
The moment the encryption key leaks in the real world, he however
has to output a uniformly looking key that makes his ciphertexts de-
crypt to the correct messages. Even knowing the messages by now,
this is infeasible unless we assume a non-committing encryption scheme.
Furthermore, as long as the requested key is shorter than n, Nielsen
[Nie02a] showed that NCE cannot be achieved in the standard model
by non-interactive protocols.

Of course one could avoid this impossibility by utilizing stronger
primitives and/or assumptions, such as non-committing encryption.
In some contexts, such as when considering deniability, their stronger
guarantees might even be inherently necessary. In this work, we however
pose the following question: How can we express the aforementioned
security guarantees, that the encrypt-then-MAC paradigm using regular
encryption intuitively does provide, in a composable framework? That is,
rather than establishing a stronger security notion, we aim at expressing
the exact guarantees provided by existing game-based notions.

92 Chapter 5. Overcoming the Commitment Problem

5.2.3 Our Solution
So how to express the natural properties that are achieved? First, let
us have another look at the reason for the impossibility: traditional
simulation-based security notions require the simulator to commit to a
ciphertext, emulating the encryption, based on the length only. Even if
the simulator later gets to learn the entire message, it cannot come up
with an encryption key that decrypts the previously output ciphertext
to this message. Observe, however, that outputting the length only is
just a technical way of expressing confidentiality until either one of the
keys leak. In principle, there is no inherent requirement for a consistent
simulation strategy across the different phases of the experiments. This
is exactly what our proposal of interval-wise guarantees builds on:
allowing disjoint simulation strategies for different phases of a protocol
run. In other words, we simply make three disjoint security statements,
one guaranteeing confidentiality and authenticity until either key is
leaked, one only guaranteeing authenticity between the exposure of the
encryption key and the MAC key, and one guaranteeing correct delivery
of messages afterwards. Given the specification centric approach of
Constructive Cryptography, this can be phrased as

πENCπMAC[AuthKey,EncKey, InsecCh] ⊆ S1 ∩ S2 ∩ S3,

where S1 to S3 are specifications formalizing the respective guarantees.
Phrasing separate statements can trivially be done in any framework,

but also comes with a number of drawbacks. First, having to specify
three constructions of unconnected, potentially differently described,
specifications incurs a certain cognitive overhead, making the overall
achieved security more demanding to understand. Second, and more
severely, one loses some compositional properties. In particular, the
analysis of another protocol building on top of those guarantees would
require to make the exact same case distinction.

To overcome those drawbacks, we phrase each guarantee as an
appropriate interval-wise relaxation of the same underlying resource:
the downgradable secure channel. That is, we phrase security as

πENCπMAC[AuthKey,EncKey, InsecCh]
⊆ SecChDgφ1 ∩ SecChDgφ2 ∩ SecChDgφ3 ,

5.2. Interval-Wise Guarantees: Motivation & Intuition 93

where φ1 to φ3 formalize the interval-wise relaxations. Another protocol
can then simply assume the overly idealized downgradable secure channel
SecChDg, with our novel composition theorem taking care of devising
the appropriate overall security statement. We formalize this type
of relaxation and the corresponding composition theorem in the next
section, i.e., Section 5.3 .

Translating the approach to another composable framework, such as
UC, might be feasible but non-trivial. First, one might try to formalize a
single interval-wise guarantee as a different corruption model, where for
instance the adversary simply does not get the encryption key to securely
realize a functionality analogon to SecChDg. To then compose this step
with a SecChDg-hybrid statement, one would probably require some
compiler translating the statement. We, thus, believe that formalizing
our results in CC that allows for arbitrary specifications is both simpler
and more natural.

A remark on adaptive versus static security

Our security statement makes a static case separation on the intervals
considered. This might raise the question as to how this differs from
simply considering static corruptions only. We would like to stress that
our statement is about a real-world system, where the environment
gets to adaptively (depending on all the outputs it sees) choose when
the appropriate keys are leaked. Hence, our notion lies somewhere in
between the traditional notions of static and adaptive security.

To which extent our notion suffices in practice, and when a stronger
traditional adaptive statement is required, is in our opinion an interesting
open research problem. On the one hand, fully adaptively secure
notions, without doubt, play a crucial role as a technical tool in many
cryptographic constructions. On the other hand, very few cases are
known where the overall security of an application actually seems to
be meaningfully impacted by adaptiveness. For instance, consider the
folklore example of an MPC protocol where an adversary knows which
party she has to corrupt based on some observed value during the
execution. Nevertheless, for a polynomially sized adversary structure
(i.e., choices which parties to corrupt), the adversary could still guess
upfront, implying that even traditional static security would suffice. This
is for instance the case if there are only logarithmically (or constant)

94 Chapter 5. Overcoming the Commitment Problem

many parties overall.
Moreover, even if there super-polynomially many choices, it could

still be that our interpretation of the static result is wrong: if we
distinguish n static cases, and in each one of them a certain property
is violated with probability ε, then all we can say is that by the union
bound the probability of a property being violated is bounded by nε.
Hence, concluding from ε being negligible that the protocol is overall
secure, might simply not be sound in the first place.

A remark on stronger security guarantees

The primary goal of this work is to express the security guarantee of
certain schemes in a composable framework, for which so far this has not
been possible. This does not contradict stronger security notions, such as
non-committing encryption, being of use as well. For instance, insisting
that the simulator can explain the ciphertexts (in the traditional notion)
formalizes that the ciphertexts are never of any value—in a broader sense
than confidentiality. This might play an important role in advanced
properties such as deniability, or e.g. in a scenario where an adversary
wants to prove to another party that he managed to wiretap the channel
before the transmitted message and the corresponding encryption key
are publicly announced. Phrasing that no adversary can succeed requires
the simulator to work beyond the public announcement, and achieving
it requires non-committing encryption. Otherwise, committing to the
ciphertext ahead of the public announcement should convince the other
party.

5.3 Interval-Wise Guarantees: Definitions
In this section, we formalize interval-wise guarantees as a type of re-
laxation and provide the corresponding composition theorem. In the
spirit of modularity, we proceed in several steps. First, we introduce one
relaxation that waives all guarantees after a certain point, and second,
the complementary one that waives all guarantees before a certain event.
Third, we combine those relaxations and show that it fits well into the
existing theory. Finally, we present the resulting construction notion
and phrase the motivating example therein.

5.3. Interval-Wise Guarantees: Definitions 95

5.3.1 Guarantees up to Some Point
As we have seen in the motivational example, the confidentiality of the
messages should be guaranteed until the key is leaked. To phrase this,
we, on a high level, only require that the simulator works up to this
event. We formalize this as a novel type of relaxation consisting of all
systems behaving equally up to this point. To this end, for a resource
R, we consider the modified resource that halts once a certain predicate
on the global event history is satisfied.

Definition 5.3.1. Let R denote a resource, and let P (E) denote a
monotone predicate on the global event history. That is, if E is a prefix
of E ′ then P (E)→ P (E ′). Then, we denote by untilP (R) the resource
that behaves like R but halts the moment P (E) becomes true. That is,
it no longer triggers any further events and all subsequent (including the
one for the query that triggered the condition) answers are the special
symbol ⊥ .

Getting back to our example, consider the resource untilP (SecChDg)
for P (E) := E leaked

AuthKey∨E leaked
EncKey, depicted in Figure 5.2 . Since this resource

no longer produces any output once either event occurred, it clearly
never leaks the messages to Eve and removes Eve’s capability of injecting
messages. Hence, the resulting resource closely matches the expected
secure channel when ignoring key exposures.

We now define the according relaxation, which maps a system to
the set of all systems that behave equivalently up to some event.

Definition 5.3.2. Let P be a monotone predicate on the global event
history, indicating until when the behavior must be the same as the
one of the resource R. Then, the induced relaxation on a resource R,
denoted RP], is defined as

RP] :=
{

S
∣∣ untilP (R) = untilP (S)

}
We call such a relaxation generally an until-relaxation.

As with the ε-relaxation, the statements only become reusable and
thus truly composable if we understand how the until-relaxation interacts
with the other elements of the framework. For this, first observe that
equality up to some point is monotone, i.e., if two resources are equivalent

96 Chapter 5. Overcoming the Commitment Problem

Resource untilE leaked
AuthKey∨E

leaked
EncKey

(SecChDg)

Initialization
MA[·]← ⊥
mB ← ⊥
n← 0

Interface A
Input: (send,m)

require ¬
(
E leaked

EncKey ∨ E
leaked
AuthKey

)
n← n+ 1
MA[n]← m
output ok

Interface B
Input: receive

require ¬
(
E leaked

EncKey ∨ E
leaked
AuthKey

)
output mB

Interface E
Input: (leak, i)

require ¬
(
E leaked

EncKey∨E
leaked
AuthKey

)
∧MA[i] 6=

⊥
output |MA[i]|

Input: (inject,m)
output ⊥

Interfaces {E, F}
Input: (deliver, i)

require ¬
(
E leaked

EncKey ∨ E
leaked
AuthKey

)
mB ←MA[i]
output ok

Figure 5.2: The secure channel from Figure 5.1 when halted once either
key leaks. In contrast to the original one, this resource never leaks the
actual messages.

up to some point, they are also equivalent up to every earlier point. This
furthermore implies that two until-relaxations add up in the natural
manner, as follows.

Theorem 5.3.3. Let R and S be two resources, and let P1 and P2 be
two monotone predicates. Then, we have

untilP1(R) = untilP1(S) =⇒ untilP1∨P2(R) = untilP1∨P2(S).

In particular, for every specification R, we have RP1] ⊆
(
RP1])P2] ⊆

RP1∨P2].

Proof. The first property follows directly from the definition of the
until()-projection. To prove the second property, let S ∈

(
RP1])P2].

Then, there exists T ∈ RP1] such that untilP2(S) = untilP2(T). More-
over, there exists R ∈ R such that untilP1(T) = untilP1(R). By
the first property we, thus, obtain untilP1∨P2(S) = untilP1∨P2(T) =
untilP1∨P2(R), concluding the proof.

5.3. Interval-Wise Guarantees: Definitions 97

Furthermore, on a positive note, the relaxation is compatible with
both protocol application and parallel composition, as expressed by
the following theorem. Those compatibility properties—analogously to
Corollary 2.2.13 —also directly imply sequential and parallel composition
properties. For the lack of use, we however omit explicitly stating them.

Theorem 5.3.4. The until-relaxation is compatible with protocol at-
tachment, i.e., π

(
RP]) ⊆ (πR)P] and with parallel composition, i.e.,[

RP],S
]
⊆
[
R,S

]P].

Proof. For the first property, consider an arbitrary element of π
(
RP]),

i.e., πT for an arbitrary T ∈ RP]. Hence, there must exist a R ∈ R
such that untilP (R) = untilP (T). Using that untilP (π untilP (R)) =
untilP (πR) for any resource R, implies

untilP (πR) = untilP (π untilP (R)) = untilP (π untilP (T)) = untilP (πT)

and, thus, πT ∈
(
πR
)P] ⊆

(
πR
)P]. The second property follows

analogously observing that untilP ([untilP (R), S]) = untilP ([R, S]) for all
R and S.

Unfortunately, however, the until-relaxation does not commute di-
rectly with the ε-relaxation, as expressed by the following theorem.

Theorem 5.3.5. There exist specifications R and S, a monotone pred-
icate P , and a function ε mapping distinguishers to values in [0, 1] such
that (

RP])ε 6⊆ (Rε)P] and
(
Sε
)P] 6⊆

(
SP])ε.

Proof (Sketch). In the following, let R denote the following resource
that provides two interfaces: R initially chooses a seed s ∈ {0, 1}m
uniformly at random. Upon a trigger input at the first interface it
outputs PRG(s) (for some m-bits to n-bits PRG). Upon a trigger input
at the second interface, it triggers a E leaked event and outputs s. Let
the resource S work analogously except that it outputs a uniformly
distributed an independent value t ∈ {0, 1}n instead of the PRG output.
Furthermore, let P (E) := E leaked and let ε denote the reduction to the
security of the PRG.

Using R := {R} it is now easy to see that S ∈ (RP])ε: Consider a
hybrid system T that outputs PRG(s′) and s for independent and s

98 Chapter 5. Overcoming the Commitment Problem

and s′ u.a.r. Then, we have T ∈ RP], since the first output is equally
distributed and the second blinded. Moreover, distinguishing T from S
boils down to breaking the PRG-security, and thus S ∈ Tε. On the other
hand, one can show that S /∈

(
Rε
)P]. To see this, observe that if the

PRG is secure, then Rε ≈ R. Especially, leaking the seed prevents us
from replacing the first output by a truly random string. Thus, applying
the until-relaxation still does not contain S, concluding the first part
of the proof. For the other direction consider S := {S}. Using an
analogous argument one can show that R ∈

(
Sε
)P] but R /∈

(
SP])ε.

This not only raises the question which order actually corresponds
to the intuitive interpretation of such a combination—the set of all
systems which behave equally until the condition is triggered assuming
the assumption of ε is valid—but also restricts reuse of such statement.
That is, if one construction assumes SP] to obtain T , and another
one constructs Sε instead, then adjusting the former construction to
assume Sε instead is non-trivial. As a consequence, we will introduce a
combined relaxation in Section 5.3.3 , resolving both issues.

5.3.2 Guarantees From Some Point On
In this section, we now consider the complementing type of guarantees:
guarantees that only hold from a certain point on. Formalizing such
guarantees in a model where an adaptive environment interacts with
the resource is, however, quite delicate. In this work, we thus opt for
a rather simple (and restricted) version of it, where we use again a
monotone condition on the global event history. We then define the
projection that disables access to a system R before that condition is
met. Clearly, the condition must rely on “external” events only (the
ones not controlled by R), i.e., satisfying it must not require accessing
the resource itself.

Definition 5.3.6. Let P (E) denote a monotone predicate on the global
event history. For a resource R, let fromP (R) denote the resource that
behaves like R, except that it only accepts queries once P (E) is true
(and before only returns ⊥).

For instance, the resource fromE leaked
EncKey

(SecChDg) only answers queries
once the environment triggered the event E leaked

EncKey. Thus, in contrast to

5.3. Interval-Wise Guarantees: Definitions 99

Resource fromE leaked
EncKey

(SecChDg)

Initialization
MA[·]← ⊥
mB ← ⊥
n← 0

Interface A
Input: (send,m)

require E leaked
EncKey

[rest as in SecChDg]

Interface B
Input: receive

require E leaked
EncKey

[rest as in SecChDg]

Interface E
Input: (leak, i)

require E leaked
EncKey

output MA[i]

Input: (inject,m)
require E leaked

EncKey
[rest as in SecChDg]

Interfaces {E, F}
Input: (deliver, i)

require E leaked
EncKey

[rest as in SecChDg]

Figure 5.3: The secure channel from Figure 5.1 that it only accepts
queries upon leakage of the encryption key. Note that this resource
does not provide confidentiality.

SecChDg, this resource always leaks the full message of the adversary,
in line with our intuition that it describes the behavior after the key
has been exposed. A formal definition of the resource is depicted in
Figure 5.3 .

Based on this projection, we now introduce the corresponding relax-
ation.

Definition 5.3.7. Let P (E) be a monotone predicate, indicating from
which point on the behavior must be the same as the one of the resource
R. Then, the induced relaxation on a resource R, denoted R[P , is defined
as

R[P :=
{

S
∣∣ fromP (R) = fromP (S)

}
We call such a relaxation generally a from-relaxation.

The way the from-relaxation interacts with the other elements of the
theory is analogous to the until-relaxation. First, two from-relaxations
add up naturally: if we relax the guarantees offered by a specification
to only hold from the moment P1 is satisfied, and then further relax

100 Chapter 5. Overcoming the Commitment Problem

them to only hold once P2 is satisfied, then the guarantees only hold
once P1 ∧ P2 is satisfied.
Theorem 5.3.8. Let R and S be two resources, and let P1 and P2 be
monotone predicates on the global event history. Then, we have

fromP1(R) = fromP1(S) =⇒ fromP1∧P2(R) = fromP1∧P2(S).

In particular, for every specification R, we have R[P1 ⊆
(
R[P1

)[P2 ⊆
R[P1∧P2 .
Proof. The proof is analogous to the one of Theorem 5.3.3 .

Second, the relaxation is compatible with protocol application and
parallel composition, which moreover implies that it graciously interacts
with the basic construction notion.
Theorem 5.3.9. The from-relaxation is compatible with protocol ap-
plication, i.e., π

(
R[P) ⊆ (πR)[P and with parallel composition, i.e.,[

R[P ,S
]
⊆
[
R,S

][P .
Proof. The proof is analogous to the one of Theorem 5.3.4 .

Analogously to the until-relaxation, the from-relaxation, however,
does not commute with the ε-relaxation.
Theorem 5.3.10. There exist specifications R and S, a monotone
predicate P (E), and a function ε mapping distinguishers to values in
[0, 1] such that(

R[P)ε 6⊆ (Rε)[P and
(
Sε
)[P 6⊆ (S [P)ε.

Proof (Sketch). The counter example works similarly to the one from
Theorem 5.3.5 . Consider a resource R with two interfaces that initially
chooses a PRG-seed s uniformly at random. At the first interface it
outputs PRG(s). At the second interface it outputs s, but only before
some event E secure. The second resource S works analogously except
that it outputs an independent uniform random string at the first
interface instead of the PRG output. Let now R := {R}, S := {S},
and P := {E secure}. Analogous to the proof from Theorem 5.3.5 , one
can now show that S ∈

(
R[P)ε but S /∈

(
Rε
)[P , and furthermore that

R ∈
(
Sε
)[P but S /∈

(
S [P)ε.

5.3. Interval-Wise Guarantees: Definitions 101

Finally, consider the interaction between the from- and the until-
relaxation. While the from-projection and the until-projection commute,
i.e.,

fromP1(untilP2(R)) = untilP2(fromP1(R)),

it is an interesting open question whether the two respective relaxations
actually commute. As a consequence, we introduce a combined from-
until relaxation in the next subsection.

5.3.3 The Interval-Wise Relaxation
As we have seen, the ε-relaxation commutes neither with the until-
relaxation nor the from-relaxation, and its unclear whether the from-
and until-relaxations do. This impedes modularity and reusability of the
statements. Furthermore, it also deteriorates the intuitive semantics of
the statements: if for instance we want to express that a system behaves
like a certain ideal up to some point, and under certain computational
assumptions, which order of the relaxations is the right one and should
be proven? To alleviate those issues, in this section, we introduce two
combined relaxations that build on the atomic ones introduced in the
previous section. We then show that they both have natural semantics
and clean properties.

First, we consider a relaxation that combines the from- and until-
relaxation, thereby alleviating the issue that those relaxations might
not commute.

Definition 5.3.11. Let P1(E) and P2(E) be two monotone predicates,
indicating from when until when the resource must behave like R. We
then define the following relaxation

R[P1,P2] :=
{

S
∣∣ untilP2(fromP1(R)) = untilP2(fromP1(S))

}
.

While this combined relaxation apparently neither corresponds to(
R[P1

)P2] nor
(
RP2])[P1 , it interestingly corresponds to the transitive

closure thereof. Taking the transitive closure, moreover, also restores
symmetry, i.e., S ∈ R[P1,P2] ⇔ R ∈ S[P1,P2], lost by each of the two
individual combinations. Overall, this indicates that the combined
relaxation best corresponds to the intuition of the “almost-as-good”
relation it should intuitively represent.

102 Chapter 5. Overcoming the Commitment Problem

Theorem 5.3.12. For any resource R and any monotone predicates P1
and P2, we have

R[P1,P2] =
⋃
n∈N

(⋃{
Rφ1·φ2···φn | ∀i ≤ n : φi ∈ {P2], [P1}

})
=
((

R[P1
)P2]

)[P1
=
((

RP2])[P1
)P2]

,

where Rφ1·φ2···φn is a shorthand notation for first applying φ1, then φ2,
until φn.

Proof. The proof can be found in Appendix B.1.1 .

We can now leverage this alternative definition to directly derive
properties about the combined relaxations based on the proven proper-
ties of the two underlying ones. In particular, we can show that two
such relaxations add up in the expected manner and are compatible
with both protocol application as well as parallel composition.

Theorem 5.3.13. For every specification R, and all monotone predi-
cates P1, P2, P ′1, and P ′2, we have

(
R[P1,P2])[P ′1,P ′2] ⊆ R[P1∧P ′1,P2∨P ′2].

Proof. This follows directly by appropriately combining Theorems 5.3.3 ,
5.3.8 and 5.3.12 .

Theorem 5.3.14. The combined relaxation is both compatible with
protocol application, i.e., π

(
R[P1,P2]) ⊆ (πR)[P1,P2] and with parallel

composition, i.e.,
[
R[P1,P2],S

]
⊆
[
R,S

][P1,P2].

Proof. By Theorem 5.3.12 we have that R[P1,P2] =
((

R[P1
)P2]

)[P1
. Us-

ing the compatibility of the from-relaxation and until-relaxation, i.e.,
Theorems 5.3.4 and 5.3.9 , directly implies the desired properties.

As we have seen, neither the until- nor the from-relaxation commute
with the computational ε-relaxation, and the same holds true for the
from-until-relaxation as well. As a consequence, neither (R[P1,P2])ε nor
(Rε)[P1,P2]) seems to capture the set of all systems that behave like
R in the interval [P1, P2] assuming that the computational problem
encoded in ε is hard. In the spirit of the combined from-until relaxation,

5.3. Interval-Wise Guarantees: Definitions 103

we solve this issue by introducing a combined relation. Since the
ε relaxation is not idempotent, but the epsilons add up, taking the
transitive closure, however, does not match the desired relaxation but
the following restricted version of transitive closure does.

Definition 5.3.15. For two monotone predicates P1 and P2, and a
function ε mapping distinguishers to values in [0, 1], we define the
following relaxation:

R[P1,P2]:ε :=
((

R[P1,P2])ε)[P1,P2]
,

and call such a relaxation an interval-wise relaxation.

We now prove that the interval-wise relaxation has all the desired
properties.

Theorem 5.3.16. Let P1 and P2 be two monotone predicates, and let
ε be a function mapping distinguishers to values in [0, 1]. Then, for any
specification R we have

(
R[P1,P2]:ε)[P ′1,P ′2]:ε′ ⊆ R

[P1∧P ′1,P2∨P ′2]:ε[P1∧P ′1,P2∨P ′2]+ε
′
[P1∧P ′1,P2∨P ′2] ,

where ε[P1∧P ′1,P2∨P ′2](D) := ε(D ◦ untilP2∨P ′2 ◦ fromP1∧P ′1), i.e., the per-
formance of the distinguisher interacting with the projected resource,
and analogously for ε′[P1∧P ′1,P2∨P ′2].

Proof. The proof can be found in Appendix B.1.2 .

Theorem 5.3.17. The interval-wise relaxation is compatible with pro-
tocol application, i.e., π

(
R[P1,P2]:ε) ⊆ (πR)[P1,P2]:επ and with parallel

composition, i.e.,
[
R[P1,P2]:ε,S

]
⊆
[
R,S

][P1,P2]:εS .

Proof. By definition we have R[P1,P2]:ε :=
((

R[P1,P2])ε)[P1,P2]
. Using

the compatibility of the ε-relaxation and the from-until-relaxation, i.e.,
Theorems 2.2.11 and 5.3.14 , directly implies the result.

104 Chapter 5. Overcoming the Commitment Problem

5.3.4 The Resulting Construction Notion
Based on the interval-wise relaxation, we now introduce our new con-
struction notion. For a single interval, we then consider statements of
the following type.

Definition 5.3.18. Let R and S be specifications, let π be a protocol
for R, let σ be a simulator for S, and let ε be a function that maps
distinguishers to a value in [0, 1]. Moreover, let P1 and P2 be monotone
predicates on the global event history. Then, we define

R π,σ,ε,[P1,P2]−−−−−−−−−→
interval

S :⇐⇒ πR ⊆ (σS)[P1,P2]:ε,

and say that the protocol π constructs S from R within the interval
[P1, P2] and with respect to error ε and the simulator σ.

When considering multiple intervals, i.e., asserting that the real-
world specification is a subset of the intersection of multiple such state-
ments, we can simply express this as the conjunction of the appropriate
construction statements.

For ease of comparing with asymptotic game-based notions, we
however do introduce an asymptotic variant thereof.

Definition 5.3.19. Let R ⊆ Θpoly and S ⊆ Θpoly be two specifications
of efficient resource families, and let 〈πλ〉λ∈N be an efficient protocol
family. Moreover, let P1 and P2 be monotone predicates on the global
event history. If there exists an efficient simulator family 〈σλ〉λ∈N, and
a negligible family of functions 〈ελ〉λ∈N, such that

∀λ ∈ N : πλRλ ⊆ (σλSλ)[P1,P2]:ελ ,

and say that the protocol π asymptotically constructs S from R within
the interval [P1, P2], and denote it by

R 〈πλ〉λ∈N,[P1,P2]−−−−−−−−−−−→
interval-asym

S.

Note that this construction notion subsumes all the ones intro-
duced in Section 2.2 . In particular, instantiating P1 = true, P2 =
false, ε(D) = 0, and σ = id, i.e., the identity converter, yields
(idS)[true,false]:0 = S.

5.3. Interval-Wise Guarantees: Definitions 105

Application to the running example

In our example, we want to phrase that the symmetric encryption
protocol constructs the secure channel from the authenticated one and
the key in the corresponding intervals.

Proposition 5.3.20. Let πENC = (πenc, πdec) denote the protocol secur-
ing communication using a symmetric encryption scheme. Then, for
the resources in Figure 5.1 , there exist (efficient) simulators σ1, σ2,
and σ3 such that∧

(σ,ε,P1,P2)∈Ω

([
EncKey,AuthChDg

] πENC,σ,ε,[P1,P2]−−−−−−−−−−−→
interval

SecChDg
)

for

Ω :=
{(
σ1, εCPA, true, E leaked

EncKey ∨ E leaked
AuthKey

)
,
(
σ2, 0, E leaked

EncKey, false
)
,(

σ3, 0, E leaked
AuthKey, false

)}
,

where εCPA denotes a simple reduction from distinguishing the secure
and authenticated channel (without key leakage) to the IND-CPA game.

Proof. A proof sketch is presented in Appendix B.1.3 .

Composition

Finally, we finish the section by stating the composition guarantees
of this type of construction statement. It follows directly from the
properties proven about the interval-wise relaxation in Theorems 5.3.16

and 5.3.17 .

Theorem 5.3.21. Let R, S, and T be specifications, let π and π′
be protocols, let σ and σ′ be simulators, and let ε and ε′ be functions
mapping distinguishers to a value in [0, 1]. Moreover, let P1, P2, P ′1, P ′2
be monotone predicates on the event history. Then, we have

R π,σ,ε,[P1,P2]−−−−−−−−−→
interval

S ∧ S π′,σ′,ε′,[P ′1,P
′
2]−−−−−−−−−−−→

interval
T

=⇒ R π′◦π,σ◦σ′,ε̃,[P1∧P ′1,P2∨P ′2]−−−−−−−−−−−−−−−−−−−→
interval

T ,

106 Chapter 5. Overcoming the Commitment Problem

where ε̃ := (επ′)[P1∧P ′1,P2∨P ′2] + (ε′σ)[P1∧P ′1,P2∨P ′2]. Furthermore, we have

R π,σ,ε,[P1,P2]−−−−−−−−−→
interval

S =⇒ [R, T] π,σ,εT ,[P1,P2]−−−−−−−−−−→
interval

[S, T].

Proof. We first prove sequential composition. From the first part of
the assumption, Theorem 5.3.17 , and composition order invariance we
obtain

π′πR ⊆ π′
(
(σS)[P1,P2]:ε) ⊆ (π′σS)[P1,P2]:επ′ ⊆ (σπ′S)[P1,P2]:επ′ .

Moreover, using the second part of the assumption and Theorem 5.3.17

yields
σπ′S ⊆ σ

(
(σ′T)[P ′1,P

′
2]:ε′) ⊆ (σσ′T)[P ′1,P

′
2]:ε′σ .

Combining the two statements, and using the monotonicity of relax-
ations, we get

π′πR ⊆
(
(σσ′T)[P ′1,P

′
2]:ε′σ

)[P1,P2]:επ′ ⊆ (σσ′T)[P1∧P ′1,P2∨P ′2]:ε̃,

where in the last step we used Theorem 5.3.16 , directly implying the
sequential composition property. Now consider parallel composition.
We directly obtain

π
[
R, T

]
=
[
πR, T

]
⊆
[
(σS)[P1,P2]:ε, T

]
⊆
[
σS, T

][P1,P2]:εT

=
(
σ
[
S, T

])[P1,P2]:εT
,

where in the first step we used composition order invariance, in the
second step the assumption, in the third step Theorem 5.3.17 , and in
the last step composition order invariance again.

Note that since the interval-wise construction notion subsumes the
plain one, the above composition theorem also allows to combine the
respective constructions. For instance, in our example, we can compose
the construction of AuthChDg from Proposition 5.2.1 (according to the
standard notion) with the interval-wise construction of SecChDg from
Proposition 5.3.20 .

5.4. Application to Commitment Schemes and Coin-Tossing107

5.4 Application to Commitment Schemes
and Coin-Tossing

In this section, we present a composable formalization of (information-
theoretically binding) commitments that can be constructed in the
plain model. To this end, we formalize the properties of commitment
schemes—correctness, binding, and hiding—each as individual specifica-
tions. Thereby, hiding is formalized using the interval-wise guarantees
introduced in the previous section. We then apply Blum’s coin-tossing
protocol on top of it. While, obviously, the resulting specifications are
not sufficient to be used as a CRS, we show that it is unbiased.

5.4.1 Perfectly Binding Commitments

While UC commitments [CF01] provide clean and strong guarantees,
unfortunately they intrinsically require setup assumptions such as a
common reference string. Nevertheless, for many protocols, regular
commitments only satisfying the classical game-based properties seem
to suffice. This raises the question: can we formalize a weaker yet
composable security notion for (non-interactive) commitments?

In Constructive Cryptography, the security of a commitment scheme
is phrased using three different constructions [MR11], for each set of
potentially dishonest parties (ignoring the case of both parties being
dishonest). Typically, this is presented as one construction parametrized
in the set of honest parties, where the ideal specification consists of a
filtered resource. That is, for each party P, a filter φP is specified that
when connected to the resource limits the honest party’s capabilities.
However, there is no fundamental reason for those three construction
statements’ specifications to be of some unified type. As a result, we
henceforth focus on specifying each property—hiding, binding, and
correctness—individually, altough centered around the same commit-
ment resource depicted in Figure 5.4 .

We start with formalizing correctness.

Definition 5.4.1. Let πcom = (πA
com, π

B
com) denote a non-interactive

commitment protocol where A commits a value m ∈M towards B. The

108 Chapter 5. Overcoming the Commitment Problem

Resource ComA→B
M and ComA→B

M,f with f : {0, 1}∗ →M∪ {⊥}

Initialization
v ← ⊥

Interface A
Input: (commit, x) ∈ M

require ¬Ecommitted

v ← x

E +← Ecommitted

output ok

Input: (commitRaw, c) ∈ {0, 1}∗

require ¬Ecommitted

v ← f(c)
E +← Ecommitted

output ok

Interface A (continued)
Input: (open, x) ∈ M

require Ecommitted and only called once
if x = v then
E +← Eopened

output ok

Interface B
Input: isCommitted

output Ecommitted

Input: read
if Eopened then

output v
else

output ⊥

Figure 5.4: The commitment resources for message spaceM. In the
basic version, Alice has to specify the value at the time of commitment,
whereas in the unfiltered version she additionally has the ability to
commit to f(c).

scheme is said to be (perfectly) correct if[
ChA→B

1 ,ChA→B
2

] πcom−−−−→ ComA→B
M ,

where ComA→B
M denotes the commitment resource defined in Figure 5.4 ,

and ChA→B
1 and ChA→B

2 denote two single-message communications chan-
nels from A to B.

Now we proceed to formalize the hiding property. On an intuitive
level, (computational) hiding of a non-interactive commitment scheme
requires that the commitment string must not reveal any information
about the committed value to the receiver B, until the commitment is
opened. Clearly, we can directly apply our notion from Section 5.3 and
formalize this using an interval-wise relaxation.

Definition 5.4.2. Let πcom = (πA
com, π

B
com) denote a non-interactive

commitment protocol. Then, the scheme is said to be (computationally)

5.4. Application to Commitments and Coin-Tossing 109

hiding if

[
ChA→B

1 ,ChA→B
2

] πA
com,σ

B
com,ε,[true,Eopened]−−−−−−−−−−−−−−−−→

interval
ComA→B

M ,

for some simulator σB
com (attaching to Bob’s interfaces only) and some

computational assumption encoded in ε.

The situation is more challenging with binding. The UC formaliza-
tion, and analogously ComA→B

M , requires that the adversary inputs the
value to which it commits to in the initial phase, in order to formalize
that it then cannot be altered anymore. This, however implies that
the simulator must be able to extract the value from the commitment
string, fundamentally contradicting the hiding property in the plain
model. Since such a formalization is just one (albeit convenient) manner
to specify that the value is fixed at the end of the commitment phase,
we circumvent this impossibility in another manner. To this end, we
consider perfect (or information-theoretically secure) commitments only,
where the commitment string uniquely determines the committed value.
We leverage this considering a resource ComA→B

M,f , depicted in Figure 5.4

as well, which allows the dishonest A to input an arbitrary string x in
order to commit to the value v = f(x). Here, f : {0, 1}∗ →M∪ {⊥}
denotes an arbitrary function that maps the commitment string either
to a message m, or to ⊥ indicating that it is malformed.

Definition 5.4.3. Let πcom = (πA
com, π

B
com) denote a non-interactive

commitment protocol where A commits a value m ∈ M towards B.
Then, the scheme is said to be perfectly binding if there exists an
efficient simulator σA

com (connecting to Alice’s interface only) such that

[
ChA→B

1 ,ChA→B
2

] πB
com,σ

A
com,0−−−−−−−−→

sim

{
ComA→B

M,f

∣∣ f : {0, 1}∗ →M∪ {⊥}
}
,

where ComA→B
M,f denotes the extended commitment resource defined in

Figure 5.4 .

As a side note, note that the resource ComA→B
M can trivially be

expressed as a filtered version of ComA→B
M,f , where the filter φA removes

access to the commitRaw oracle. That is, we obviously have φAComA→B
M,f =

ComA→B
M for every function f .

110 Chapter 5. Overcoming the Commitment Problem

Remark. Observe that the function f is not necessary efficiently com-
putable. Actually, for a hiding scheme, f cannot be efficiently com-
putable. This, however, does not imply that the overall specification,
with the simulator attached, has to contain resources that are not effi-
ciently implementable, as the real-world specification is efficient. Thus,
one could always intersect the obtained specification with the specifica-
tion of all efficient systems, expressing that there is not more computing
power that we started of in the real-world. This is somewhat reminiscent
of the solution proposed by Broadnax et al. [BDH+17] to deal with
inefficient simulators in a manner that retains the expected composition
guarantees. Since such a restriction to overall efficiently implementable
systems, in our framework, can be treated as a separate statement, we
did not make it explicit and focused only on the security properties.

ElGamal commitments

We briefly consider a variant of ElGamal commitments as a concrete
instantiation of the above formalized notion. Let G = 〈g〉 denote a
cyclic group of order n with generator g.

• To commit to a message m ∈ G, ((ga, gb,m · gab), (a, b)) ←
Commit(m) for a, b ∈ Zn uniformly at random. That is, the
commitment string is (ga, gb,m · gab) and the opening value (a, b).

• Open((c, A,B), (a, b)) := c · g−ab if A = ga and B = gb, and ⊥
otherwise.

Proposition 5.4.4. Let πElG-com denote the pair of converters im-
plementing the aforementioned ElGamal commitment scheme (cf. Ap-
pendix B.2.1 for a formal definition). Then, πElG-com satisfies correct-
ness, hiding (under the DDH assumption), and binding according to
Definitions 5.4.1 to 5.4.3 , respectively.

Proof (Sketch). It is easy to see that the our correctness condition holds.
Furthermore, with the simulator σB

com outputting a random triple of
group elements as commitment string, hiding holds under the DDH
assumption, i.e., for ε encoding an appropriate reduction to the DDH
problem. Finally, consider the function f that maps (U, V,W) ∈ G3 to
W · g−DLg(U)·DLg(V) and all other bit-strings to ⊥. For this function, it
is easy to see that a simulator σA

com exists such that the construction that

5.4. Application to Commitments and Coin-Tossing 111

formalizes binding holds. See Appendix B.2.1 for a formal description
of the respective simulators.

5.4.2 Coin-Tossing
In this section, we consider Blum’s simple coin-tossing protocol [Blu83].
The protocol assumes to have a commitment resource from Alice to Bob,
and a communication channel in the reverse direction, at its disposal.
It then proceeds as follows: Alice chooses X ∈ {0, 1} uniformly at
random and commits to it. Once Bob is sure that Alice committed, he
chooses Y ∈ {0, 1} uniformly at random and sends it over to Alice (in
clear). Finally, Alice opens the commitment and both parties output
Z = X ⊕ Y .

Clearly, this protocol does not provide fairness—even when instan-
tiated with a UC-secure commitment. This is due to the fact that
both parties can always choose to abort the protocol by not responding,
and in particular Alice can do so after she has seen the result. When
instantiating the commitment with the resource constructed in the last
section, one even obtains a weaker resource. Note that this is inherent
for our construction being in the plain model, as otherwise it could be
used as the bit of a CRS, contradicting well-known impossibility results.

In a nutshell, the resource obtained by our construction guarantees
that the output is not biased, but does not exclude that during the
opening phase, one of the parties learns some trapdoor allowing it
to distinguish it from a uniformly random value. For example, our
formalization would allow the resulting bit to be the first bit of a PRG’s
output, while leaking the seed during the opening phase. Note that such
a coin toss resource is still useful, for instance for lotteries. First, if the
resulting bit is just used to determine which party gets some good, then
bias-resistance is obviously good enough irrespective of the fact that the
parties might be aware that the result is only pseudo-random. Second,
in a simple lottery where people’s preferences are obvious, fairness can
be achieved by declaring the party that caused the abort to have lost.

The coin-toss resource

The ideal specification is expressed in terms of the resources CTA,B
M and

CTA,B
M,f , where the former denotes a restricted version of the latter. The

112 Chapter 5. Overcoming the Commitment Problem

Resource CTA,B
M and CTA,B

M,f with f : {0, 1}∗ →M∪ {⊥}

Initialization
Z �M
initiated, responded, released← false

Interface A
Input: init

require ¬Ecommitted

initiated← true
E +← Ecommitted

output ok

Input: read
require responded
output Z

Input: (getLeakage, c) ∈ M
require only called once
output f(c)

Interface A (continued)
Input: release

require responded and only called
once
E +← Eopened

released← true
output ok

Interface B
Input: isInitiated

output initiated

Input: respond
require initiated
responded← true
output ok

Input: read
require released
output Z

Figure 5.5: The coin-toss resources for coin spaceM. In the unfiltered
version, Alice additionally has the capability to once obtain a leakage to
f(c), where f is a parameter of the resource. Note that neither version
provides fairness, as Alice can always chooses to not release the value
after having seen it.

resource CTA,B
M initially draws an element Z ∈M uniformly at random.

In order for the coin-toss Z to become available to the parties, A has
to initiate it, and B has to respond afterwards. From this point on, A
can obtain Z and then decide whether the value should also be released
to B. In the resource CTA,B

M,f , A furthermore can query once a leakage
f(c), of some potentially inefficient function f . A formal definition of
the resources can be found in Figure 5.5 .

The constructions

First, consider correctness. It is easy to see that the following construc-
tion holds, i.e., two honest parties actually get to agree on a uniform

5.4. Application to Commitments and Coin-Tossing 113

random bit, as expressed in the following proposition.

Proposition 5.4.5. Let πCT := (πA
CT, π

B
CT) denote the pair of convert-

ers implementing Blum’s protocol (cf. Appendix B.2.2 for a formal
definition). Then, we have[

ComA→B
{0,1},ChB→A] πCT−−−→ CTA,B

{0,1},

and thus [
ChA→B

1 ,ChA→B
2 ,ChB→A] πCT◦πcom−−−−−−−→ CTA,B

{0,1},

for any commitment scheme πcom satisfying Definition 5.4.1 (correct-
ness).

Second, consider the guarantee for an honest initiator A.

Proposition 5.4.6. Let πCT := (πA
CT, π

B
CT) denote the pair of converters

implementing Blum’s protocol. Then, there exists an efficient simulator
σB

CT (connecting to Bob’s interfaces only) such that

[
ComA→B

{0,1},ChB→A] πA
CT,σ

B
CT,0−−−−−−−→

sim
CTA,B
{0,1},

and thus, for any commitment scheme πcom satisfying Definition 5.4.2

(hiding), we have

[
ChA→B

1 ,ChA→B
2 ,ChB→A] πA

CT◦π
A
com,σ

B
com◦σ

B
CT,ε̃,[true,Eopened]

−−−−−−−−−−−−−−−−−−−−−−→
interval

CTA,B
{0,1},

with ε̃ :=
(
εσB

CT

)
[true,Eopened].

Proof. Recall that ComA→B
{0,1} only reveals the value X to Bob after he

sent his value Y . Hence, X and Y are independent and with X chosen
uniform at random by Alice, implying that Z = X ⊕ Y is a uniform
random value. Hence, using the simple simulator σB

CT that simulates the
output of the commitment resource as X := Z ⊕ Y (see Appendix B.2.2

for a formal definition), it is easy to see that the construction actually
achieves the coin-toss resource perfectly.

Note that this implies that the output Z that Alice obtains looks
indistinguishable from a uniform random value until the value is released

114 Chapter 5. Overcoming the Commitment Problem

for the dishonest party. Hence, while it is not guaranteed that the
dishonest party does not learn some trapdoor afterwards, the value Z
is at least unbiased.

Finally, consider the security guarantees for an honest party B against
a potentially dishonest party A. To this end, we turn to the unfiltered
resources ComA→B

{0,1},f and CTA,B
{0,1},f , where the latter once allows Alice

to obtain f(c) for a c of her choice.

Proposition 5.4.7. Let πCT := (πA
CT, π

B
CT) denote the pair of converters

implementing Blum’s protocol. Then, there exists an efficient simulator
σA

CT such that{[
ComA→B

{0,1},f ,ChB→A] ∣∣ f : {0, 1}∗ → {0, 1,⊥}
}

πB
CT,σ

A
CT,0−−−−−−−→

sim

{
CTA,B
{0,1},f

∣∣ f : {0, 1}∗ → {0, 1,⊥}
}
,

and thus, for any commitment scheme πcom satisfying Definition 5.4.3

(binding), we have[
ChA→B

1 ,ChA→B
2 ,ChB→A]

πB
CT◦π

B
com,σ

A
com◦σ

A
CT,0−−−−−−−−−−−−−−→

sim

{
CTA,B
{0,1},f

∣∣ f : {0, 1}∗ → {0, 1,⊥}
}
.

Proof. Consider the real-world system resulting from attaching Bob’s
converter only, for some function f . Interacting with this resource, the
environment can input a commitment string C at Alice’s interface, then
see Bob’s bit Y at Alice’s channel interface, and finally see the resulting
bit Z = f(C)⊕ Y as the output of Bob’s converter. In the following,
consider the ideal-world system with the same function f as in the real
world. It is now easy to see that a simulator can easily replicate the
real-world behavior by getting Z from the resource, querying the leakage-
oracle on C getting f(C), and then setting Y = Z ⊕ f(C). A formal
definition of the simulator σA

com can be found in Appendix B.2.2 .

As a final note, observe that formalizing Bob’s security guarantees
for the commitment resource in terms of an interval-wise relaxation,
rather than introducing the unfiltered resource CTA,B

{0,1},f , would not
work. This is due to the fact that in the real world Y (requiring the
additional capabilities to simulate) is output at Alice’s interface before

5.5. Revisiting Composable Identity-Based Encryption 115

Bob sees Z. Hence, simulating only until Alice sends Y would not give
any guarantees on Bob’s output. In summary, this demonstrates Con-
structive Cryptography’s advantage of being able to consider different
types of statements within one (meta-)framework.

5.5 Revisiting Composable Identity-Based
Encryption

In this section, we reexamine a result by Hofheinz, Matt, and Maurer
[HMM15] implying that IND-ID-CPA security is not the right notion
for identity-based encryption, unmasking this claim as an unnecessary
framework artifact.

5.5.1 Background and Motivation
Identity-based encryption (IBE) is a generalization of public-key en-
cryption that allows to encrypt messages using a master public key and
the identity of the receiver, e.g., the e-mail address. This stands in
contrast to a regular public-key encryption scheme, where the encryp-
tion needs the receiver’s public key, suggesting IBE as a solution to the
key-distribution problem.

An IBE scheme IBE := (Gen,Ext,Enc,Dec) consists of four algo-
rithms. The key generation algorithm (mpk,msk)← Gen(1λ) outputs a
master public and a master secret key (given the security parameter as
input). The extraction algorithm sk id ← Ext(msk, id) outputs a user se-
cret key given the master secret key and the user’s identity. Encryption
c ← Enc(mpk, id,m) outputs a ciphertext, and m′ ← Dec(skid , id, c)
the corresponding plain-text. For correctness, it is required that for
all (mpk,msk) ← Gen(), all identities id, all messages m, and all
skid ← Ext(msk, id), we always have Dec(skid , id,Enc(mpk, id,m)) = m.
Security, on the other hand is classically formalized via game-based
definitions. For security against passive attacks, the standard notion is
ind-id-cpa, as depicted in Figure 5.6 . Weaker notions have been proposed
as well, such as a version ind-sid-cpa, depicted in Figure 5.6 as well,
where the adversary has to choose the identity under attack without
knowing the master public key.

116 Chapter 5. Overcoming the Commitment Problem

Expind-id-cpa
IBE,A

b � {0, 1}
(mpk,msk)← Gen()
(st, id,m0,m1)
← AExt(msk,·)(mpk)

c← Enc(mpk, id,mb)
b′ ← AExt(msk,·)(st, c)
return b = b′

Expind-sid-cpa
IBE,A

b � {0, 1}
(mpk,msk)← Gen()
(st, id)← A()
(st′,m0,m1)
← AExt(msk,·)(st,mpk)

c← Enc(mpk, id,mb)
b′ ← AExt(msk,·)(st′, c)
return b = b′

Expind-id1-cpa
IBE,A

b � {0, 1}
(mpk,msk)← Gen()
st ← AExt(msk,·)()
(st′, id,m0,m1)

← A(st,mpk)
c← Enc(mpk, id,mb)
b′ ← AExt(msk,·)(st′, c)
return b = b′

Figure 5.6: Game-based security definitions of identity-based encryption
against passive attacks. The standard version (left) has been put forward
by Boneh and Franklin [BF01]. Later, a weaker static notion (middle)
has been introduced by Canetti, Halevi, and Katz [CHK03]. Finally,
Hofheinz, Matt, and Maurer proposed a version loosely corresponding
to the standard one under “lunchtime attack” (right). Note that in all
of them, A is not allowed to query Ext on the identity it output.

Hofheinz, Matt, and Maurer [HMM15] investigated the composable
security of IBE in Constructive Cryptography from an application
centric point of view. To this end, they considered non-interactive
communication, the apparent standard application of IBE. Assume
that there is a trusted party that stores the master secret key and
handles registration, i.e, hands out the user secret keys to the correct
users. A set of users, each knowing the master public key and his user
secret key(s), can now confidentially send messages to each other by
encrypting it under the receiver’s identity. The obvious security goal
is that only the legitimate receiver can read the message. In turned
out, however, that the standard ind-id-cpa security does not imply such
a construction in the standard simulation-based construction notion—
even when considering static corruptions only—due to the commitment
problem. They, however, managed to show that such a scheme suffices in
a weaker setting where it is guaranteed that all identities are registered
before the first ciphertext is ever sent. Furthermore, the authors also
introduced a new weaker security notion ind-id1-cpa, that essentially
considers “lunchtime attack” and proved that it suffices for the same
construction. They hence concluded, that the standard notion is at the
same time both too strong (to achieve the weaker construction) and too

5.5. Revisiting Composable Identity-Based Encryption 117

weak (to achieve the desired construction).
Since the weaker construction is not very realistic, e.g., in a company

it is natural that new employees join long after the first ciphertext has
been sent, the question about the right security definition remained
open. In the remainder of this section, we devise a natural composable
formalization based on interval-wise guarantees whose security exactly
corresponds to the standard ind-id-cpa notion—resolving the issue.

5.5.2 The Real and Ideal Worlds
On a high level, Hofheinz et al. considered non-interactive secure com-
munication in a setting with one honest sender A, n potentially dishonest
receivers Bi, and one honest party C deriving and distributing the user
secret keys. We here consider the same setting with essentially the same
resources as in the original work.

In the real world, we assume that the sender A has a broadcast
channel BCASTn available, through which the ciphertexts are sent. For
simplicity, we will assume guaranteed delivery throughout the rest of
the example. Furthermore, we assume the existence of an authenticated
channel AUTHC→A

P from C to A to transmit the master public key Alice
needs for encryption, and n secure channels SECC→Bi

P from C to Bi to
transmit the user secret keys. A formal description of the corresponding
resources can be found in Figure 5.7 . Recall that we consider static
corruptions here. Hence, the set of corrupted parties P appears as an
explicit parameter of the resources.

The protocol securing the communication works as expected: when-
ever Alice wants to send a message to a certain identity, she encrypts
it under the given id and broadcasts the ciphertext together with the
identity. Each honest receiver then checks whether he has the corre-
sponding decryption key, i.e., has been registered for this identity, and
either decrypts the message or discards it. Finally, Charlie’s protocol
not only sends the master public key to Alice, but also allows to register
identities for each receiver. Note that each identity can in principle be
registered to many interfaces, i.e, many parties can posses the same
user secret key. Furthermore, the assignment is not fixed but chosen by
the environment, modeling an arbitrary or even adversarially chosen
assignment. For completeness, a formal description of the corresponding
converters πA

Enc,t, π
Bi
Dec, and πC

Ext is given in Figure 5.8 .

118 Chapter 5. Overcoming the Commitment Problem

Resource AUTHC→A
P

Initialization
M ← empty array
j ← 0

Interface C
Input: (send,m) ∈ M
j ← j + 1
M [j]← m
output ok

Interface A
Input: (read, k) ∈ N

require k ≤ j
output M [k]

Interface Bi, for i ∈ P
Input: (read, k) ∈ N

require k ≤ j
output M [k]

Resource SECC→Br
P

Initialization
M ← empty array
j ← 0

Interface C
Input: (send,m) ∈ M
j ← j + 1
M [j]← m
output ok

Interface Br
Input: (read, k) ∈ N

require k ≤ j
output M [k]

Interface Bi for i ∈ P \ {r}
Input: (read, k) ∈ N

require k ≤ j
output |M [k]|

Resource BCASTn

Initialization
M ← empty array
j ← 0

Interface A
Input: (send,m) ∈ M
j ← j + 1
M [j]← m
output ok

Interface Bi, for i ∈ {1, . . . , n}
Input: (read, k) ∈ N

require k ≤ j

E +← E read(i,k)

output M [k]

Figure 5.7: Description of the assumed resources.The set P ⊆ {1, . . . , n}
thereby specifies the set of statically corrupted receivers Bi, while the
sender A and registrar C are assumed to be honest.

5.5. Revisiting Composable Identity-Based Encryption 119

Converter πA
Enc,t

Initialization
mpk ← ⊥
j ← 0

Emulating Interface A of DCCIDn,t,P
Input: (send, id,m) ∈ ID ×M

require j < t
if mpk = ⊥ then

call mpk ← read
at interface A of AUTHC→A

P
if mpk 6= ⊥ then

c← Enc(mpk, id,m)
call send, (id, c)

at interface A of BCASTn
j ← j + 1
E +← Esent(j,id)

return ok
else

return ⊥

Converter πBi
Dec

Initialization
SK ← empty array
j ← 1

Emulating Interface Bi of DCCIDn,t,P
Input: (read, id, k) ∈ ID ×N

// fetch all pending user keys
repeat

call (id′, sk)← read, j
at interface Bi of SECC→Bi

P
if (id′, sk) 6= ⊥ then

SK [id′]← sk
j ← j + 1

until (id′, sk) = ⊥

// fetch message and decrypt
call (id,m)← read, k

at interface Bi of BCASTn
if (id,m) 6= ⊥ ∧ SK[id] 6= ⊥ then

return Dec(SK [id], id, c)
else

return ⊥

Converter πC
Ext

Initialization
mpk,msk ← ⊥

Emulating Interface C of DCCIDn,t,P
Input: init

require only called once
(mpk,msk)← Gen()
call send,msk

at interface C of AUTHC→A
P

return ok

Emulating Interface C of DCCIDn,t,P
Input: (register, id, i)

∈ ID × {1, . . . , n}
require msk 6= ⊥
sk ← Ext(msk, id)
call send, (id, sk)

at interface C of SECC→Bi
P

E +← E registred(id,i)

return ok

Figure 5.8: A formal description of the converters using IBE to achieve
confidentiality.

120 Chapter 5. Overcoming the Commitment Problem

Finally, consider the ideal resource DCCIDn,t,P , which stands for de-
livery controlled channel. The name derives from the fact that the
encryption can be seen as a mechanism with which the sender can spec-
ify to whom the message should be delivered. Hence, the resource acts
like the broadcast channel, except that each message is only received
by parties registered for the specified identity. Other dishonest parties
may learn the message length, while honest parties ignore messages
not intended for them. Furthermore, dishonest party might also learn
which receiver is registered for identities (as the secure channel leaks
the length of the user keys, which might depend on the identity). A
formal definition of the resource is depicted in Figure 5.9 . Note that
compared to [HMM15], we will use global simulators rather than local
ones, what allowed us to simplify the resource a bit.

5.5.3 The Composable Statement
One of the main results in [HMM15] has been showing that, due to the
commitment problem, an IBE scheme does not construct the delivery
controlled channel even under static corruptions.

Proposition 5.5.1 (Theorem 5.1 in [HMM15]). Let P ⊆ {1, . . . , n}
denote the set of statically corrupted receivers. For every (efficient)
simulator σPIBE, we have[

BCASTn,AUTHC→A
P ,SECC→B1

P , . . . ,SECC→Bn
P

]
6

πn,t,PIBE ,σPIBE,εind-id-cpa−−−−−−−−−−−−−→
sim

DCCIDn,t,P ,

where εind-id-cpa denotes a reduction to the ind-id-cpa game and

πn,t,PIBE :=
{
πA

Enc,t, π
C
Ext
}
∪

⋃
i∈{1,...,n}\P

πBi
Dec

denotes the protocol where all honest parties apply their converter.

In the end, one is however not interested in such a strong guaran-
tee. Rather, the above construction was just intended as a proxy to
formalize confidentiality of the messages. Using our approach, hence
immediately yields a better statement based on interval-wise guarantees.

5.5. Revisiting Composable Identity-Based Encryption 121

Resource DCCIDn,t,P

Initialization
M ← empty array, j ← 0, initiated←
false
for i ∈ {1, . . . , n} do

ni ← 0, Ii ← empty array

Interface A
Input: (send, id,m) ∈ ID ×M

require initiated ∧ j < t
j ← j + 1, M [j]← (id,m)

E +← Esent(j,id)

output ok

Interface C
Input: init

require only called once
initiated← true

Input: (register, id, i) ∈ ID ×
{1, . . . , n}

require initiated
ni ← ni + 1
Ii[ni]← id

E +← E registred(id,i)

output ok

Interface Bi for i ∈ {1, . . . , n}
Input: (read, id, k) ∈ ID ×N

require k ≤ j
(id,m)←M [k]

E +← E read(k,i)

if ∃` : Ii[`] = id ∨ E insec(k) then
output (id,m)

else if i ∈ P then
output (id, |m|)

else
output ⊥

Interface Bi for i ∈ P (additional)
Input: (identities, k) ∈ {1, . . . , n}

output Ik

Figure 5.9: The delivery controlled channel with an honest sender A, an
honest registrar C, and n receivers Bi, with P ⊆ {1, . . . , n} denoting the
statically corrupted ones.

122 Chapter 5. Overcoming the Commitment Problem

More concretely, we consider each message individually and guarantee
its confidentiality until it trivially leaks because a dishonest party is
registered for the corresponding receiver’s identity.

In the following, let E sent(j,id) indicate that the j-th message has been
encrypted for identity id, E registred(id,i) indicate that the i-th receiver
has been registered for identity id, and E read(j,i) that the i-th receiver
read the j-th message. Moreover, let E insec(j) indicate that the j-th
message is not confidential. See the dashed boxed in Figure 5.9 for a
formal definition of when those events get triggered in the ideal world.
Note that in the real world the former two events get triggered in the
converters πA

Enc,t and πC
Ext, respectively (cf. Figure 5.8), whereas the

third one gets triggered in the underlying broadcast channel BCASTn
(cf. Figure 5.7). This is due to the fact that Alice and Charlie are
assumed to always apply their converter, while the dishonest receivers
can access the broadcast channel directly.

Theorem 5.5.2. Let t ∈ N denote an upper bound on the number
of messages, let P ⊆ {1, . . . , n} denote an arbitrary set of statically
corrupted receivers, and let πn,t,PIBE denote the protocol where all honest
parties apply their converter as in Proposition 5.5.1 . For each P, there
exists a sequence of efficient simulators σP,jIBE and a reduction εind-id-cpa
to the ind-id-cpa game, such that

∧
j∈{1,...,t}

([
BCASTn,AUTHC→A

P ,SECC→B1
P , . . . ,SECC→Bn

P
]

πn,t,PIBE ,σP,jIBE ,εind-id-cpa,[Ponly(j),Pleaked(j)]
−−−−−−−−−−−−−−−−−−−−−−−−→

interval
DCCIDn,t,P

)
,

where

Pleaked(j)(E) := ∃i ∈ P : E sent(j,id) ∧ E registred(id,i) ∧ E read(j,i)

formalizes the event that the j-th message inherently leaked, and

Ponly(j)(E) :=
∧

`∈{1,...,t}\{j}

E insec(`)

formalizes that we do not consider confidentiality of the other messages.

5.5. Revisiting Composable Identity-Based Encryption 123

Converter σP,jIBE

Initialization
(mpk,msk)← Gen()

Emulating Int. Bi of BCASTn, i ∈ P
Input: (read, k) ∈ N

if M [k] = ⊥ then
if k 6= j then

call (id,m)← read, k
at interface Bi of BCASTn

if (id,m) 6= ⊥ then
M [k] ←
(id, Enc(mpk, id,m))

else
call (id, len)← read, k

at interface Bi of BCASTn
if (id, len) 6= ⊥ then

M [k] ←
(id, Enc(mpk, id, 0len))

else
E +← E read(k,i)

return M [k]

Emulating Int. Bi of AUTHC→A
P , i ∈ P

Input: (read, k) ∈ N
if k = 1 ∧ ∃id : Esent(1,id) then

return mpk
else

return ⊥

Emulating Int. Bi of SECC→B`
P , i ∈ P

Input: (read, k) ∈ N
call I` ← identities, `

at interface Bi of DCCIDn,t,P
if I`[k] = ⊥ then

return ⊥
else

sk ← Ext(msk, I`[k])
if ` = i then return sk
else return |sk|

Figure 5.10: The simulator from Theorem 5.5.2 .

Proof (Sketch). The simulator initially generates a master secret-key
and master public-key pair. Observe that for all messages except the
j-th one, the ideal-world resource outputs the actual message (together
with the corresponding identity). Hence, the simulator can simply
encrypt it himself under the correct identity. For the j-th message,
observe that the simulator only has to work if none of the dishonest
receivers obtained the corresponding user key, and this key will then
never get revealed. Hence, the simulator can encrypt the zero-string of
the appropriate length. See Figure 5.10 for a formal definition of the
simulators.

Observe that the reduction from distinguishing the real- and idea-
world to the ind-id-cpa game is straight-forward. For all but the j-th
message, the reduction can simply query the game for the corresponding
user key, and the challenge can be chosen as (mj , 0|mj |). If b = 0, this
corresponds to the real-world behavior, and if b = 1 to the ideal-world
behavior.

124 Chapter 5. Overcoming the Commitment Problem

Remark (On interpreting conjunction specifications). Observe that
phrasing our statement for a bounded number of messages is with-
out loss of generality in any actual application. We, however, have
chosen to do so for good reasons. Assume for the moment that ε
is simply a constant in [0, 1]. If we have a specification of the form⋂
i∈J Si

ε, then this can be read as the guarantee given by Si holding
with probability 1− ε. In the end, we are however interested to know
the probability such that all guarantees hold. In general, the best we
can do is to apply the union bound, implying that the error is bounded
by ε|J |. As a result, it is important that the number of conjunctions is
small for the statement to be meaningful. Especially, while we could
prove an analogous statement with intervals terminated by the leakage
of each user key (rather than the messages), this would only make sense
if the identity-space is small, in which case ind-sid-cpa security would
suffice.

Chapter 6

A Case Study:
Secure Messaging

In this chapter, we demonstrate how the tools and techniques developed
in the previous parts apply to the context of secure messaging protocols.
First, Constructive Cryptography with events allows us to deal with
dependencies between various components and, thus, achieve proper de-
composition of the protocols, which is a key requisite for modularization.
Second, secure messaging protocols are prone to the simulator commit-
ment problem, since they are typically designed for a setting where
parties’ state, including keying material, can be adaptively exposed.

6.1 Introduction

6.1.1 Motivation
Secure-messaging (SM) protocols attempt to provide strong security
guarantees to two parties that communicate over an asynchronous net-
work. Apart from protecting confidentiality and integrity of messages,
the desired properties include forward secrecy and healing from a state
or randomness exposure. The latter properties are addressed by the so-
called ratcheting protocols, having the parties continuously update their
secret keys. The term ratcheting on its own does not carry any formal

126 Chapter 6. A Case Study: Secure Messaging

meaning; rather, it is an umbrella term for a number of different guar-
antees, somehow related to the concept of updating keys. One notable
example of ratcheting is the widely-used Signal protocol [OWS17] with
its double-ratchet algorithm, formally analyzed in [CCD+17 ; ACD19].
Furthermore, there exist protocols with much stronger guarantees, but
that require the messages to be delivered in order [Poe18 ; JS18 ; DV18 ;
JMM19a]. Protocols with the stronger guarantee of immediate out-of-
order decryption have been proposed in [ACD19]. While the majority
of the literature considers secure communication, some works view
ratcheting as a property of key exchange instead [BSJ+17 ; Poe18].

A number of proposed protocols pursue similar goals, but each
achieves a slightly different trade-off between security, efficiency and
usability. Moreover, each construction comes with its own—usually
fairly complex—security game, intermediate abstractions, and primitives.
This renders them hard to compare and hinders achieving new trade-offs
that would result from combining ideas from different protocols.

To remedy those issues, composable security frameworks appear to be
a natural fit. Ideally, each sub-protocol would come with a composable
security proof, forming a library of reusable statements that can be
freely plugged together to achieve protocols that hit the right security-
efficiency trade-offs for the given context. Traditionally, composable
statements have been hindered, however, by two of the major obstacles
considered in this thesis. First, secure messaging or ratcheting protocols
are inherently designed for a setting where parties’ state is assumed to
be leakable, making them subject to the commitment problem. Second,
due to their asynchronous nature, their security properties are typically
intertwined, e.g., with post-compromise security heavily depending on
the order of message delivery.

6.1.2 Contributions
Composable, unified, and modular statements. We present the
first model of secure messaging (sub-)protocols in a composable frame-
work. We thereby employ our solutions from Chapter 5 to overcome the
commitment problem that is inherent to SM protocols designed for a
setting where parties’ state is assumed to be leakable. Furthermore, we
use CC with events, introduced in Chapter 3 , to disentangle dependen-
cies among the various components in a clean yet systematic manner,

6.1. Introduction 127

paving the way for a truly modular design and analysis.
Building on CC with events, we moreover parameterize resources

by several discrete parameters that depend on the global event history.
The goal of a (sub-)protocol is then understood as improving a certain
parameter (e.g. making a channel confidential) while leaving the other
parameters unchanged, independently of what they are, leading to
statements that are reusable in different protocols or contexts. This
approach stands in stark contrast to existing game-based definitions,
which usually formalize exactly what is required by the next sub-protocol
for the overall protocol’s security proof to go through.

We consider three ratcheting sub-protocols. On the way, we discover
cases where the existing game-based notions are insufficient to prove
the stronger, more modular, statements that don’t fix the properties
(i.e., the switch positions) of the assumed network, but where they can
be achieved by simple modifications.

A non-committing protocol. While our novel solutions from Chap-
ter 5 allows us to circumvent the simulator commitment problem, some-
times one might still aim to achieve an even stronger specification. For
instance, one might want to translate them to other simulation-based
framework not allowing for such interval-wise specifications, or one just
needs a stronger statement as a technical intermediate step. As a sec-
ond contribution, we thus propose a technique that allows to transform
many standard SM protocols into protocols that achieve full composable
security, at the expense of an efficiency lost, as well as being restricted
to only sending a bounded number of messages before receiving a reply
from the other party. We apply this technique to the HIBE protocol
mentioned above and construct its fully composable version.

6.1.3 The Constructive Cryptography Setting
In this chapter, we build on Constructive Cryptography with events, as
introduced in Chapter 3 . Since we consider secure messaging protocols
for bilateral communication in the presence of a network adversary,
we use the Alice-Bob-Eve setting, as introduced in Section 2.2.6 , with
P = {A, B, E, F} (where F denotes a free interface directly accessed by the
distinguisher). An overview of this setting is depicted in Figure 6.1 . We
specify protocols (for the honest parties) as a tuple, i.e., π := (πA, πB),

128 Chapter 6. A Case Study: Secure Messaging

A B

E

F

RπA πB
A B

E

F

S

σ

Figure 6.1: Execution of the protocol in the real world by Alice and
Bob (left) and the ideal world with the simulator attached to Eve’s
interface (right). The free interface on the top is accessed directly by
the environment in both worlds.

where the first converter is understood to be connected to Alice’s
interfaces and the second converter to Bob’s interfaces, respectively.

All our security statements in this chapter involve computational
security, i.e., ε-relaxations, and are simulation-based. We, thus, employ
the construction notion introduced in Section 2.2.5 .

6.2 The Unified Composable Statement
In this section, we introduce the unified type of construction statement
that we make about SM protocols and components thereof.

6.2.1 The Approach
We opt for the natural choice of an application-centric approach, where
the security of a cryptographic scheme or primitive is defined as the
construction it achieves when used in a particular application. While this
approach provides readily understandable and clean security statements,
the resulting definitions often turn out to be overly specific. For instance,
the statement about an encryption scheme might hard-code a particular
assumed authentic communication network, implying that it cannot
be directly combined with an authentication scheme achieving slightly
different guarantees.

Avoiding such overly specific statements is crucial for a modular

6.2. The Unified Composable Statement 129

treatment of ratcheting protocols, as each sub-protocol of the prior
literature achieves slightly different guarantees. We address this problem
by making parameterized construction statements, where the assumed
real-world resources are parameterized by several “switches” determining
their security guarantees. Formally, such a “switch” is represented by a
function of the global event history E (among others), that dynamically
defines the behavior of the resource at a given moment in time. For
instance, a leakage function L may specify to which extent a channel
leaks depending on the set of events that happened so far. The goal
of a protocol is then to improve certain parameters while leaving the
others unchanged, independently of what they were in the beginning.
That is, our construction statements will be of the type that a protocol
constructs a communication network with certain (stronger) guarantees,
assuming a network with certain (weaker) guarantees, where the real-
world guarantees are treated as a parameter instead of hard-coding
them.

Note that in the context of ratcheting protocols, making such param-
eterized statement about components—without a-priori assuming any
guarantees about the real-world—is mostly not an issue. This is due to
the fact that the protocols anyway have to be designed for the setting
where the state and randomness could leak at any time, temporarily
nullifying all guarantees that the component might try to assume from
the underlying sub-protocols.

6.2.2 Our Channel Model
We now introduce our model of two-party communication networks.
It allows us to express flexible security guarantees, but also various
usability restrictions or guarantees, such as whether messages can be
received out of order or not.

Many single-message channels. We choose to model the commu-
nication network between Alice and Bob as the parallel composition of
many unidirectional single-message communication channels. Besides
being simpler to describe, it allows to have simpler construction steps
which only consider a subset of the channels. On the flip side, it results
in a world with an arbitrary but bounded number of messages, as the set
of resources is static in CC. This is, however, without loss of generality

130 Chapter 6. A Case Study: Secure Messaging

as long as the protocols do not take advantage of this upper bound.
Finally, observe that this decision results in a network where messages
have implicit (unprotected) sequence numbers, as for instance achieved
by TCP.

The single-message channel. We model channels with authenti-
cated data. Since we will use the same type of channel both in the
real and ideal world, the channel must hit the right trade-off between
giving enough power to the simulator but not too much power to the
real-world adversary.

On a high level, the channel interfaces and their capabilities are as
follows. See Figure 6.2 for the formal definition.

• The sender S can issue the command (send,m, ad). Whether she
is allowed to do so is determined by the can-send predicate S.
(This predicate will mainly be used to describe situations in which
the sender does not have the necessary keys yet.) A successful
sending operation triggers the event E sent. The sender can also
query whether the channel is available for transmission.

• The adversary E can then potentially learn m through the read
command. Whether she is allowed to do so is determined by the
can-leak function L, which outputs either false (the adversary
is not allowed to read m), true (reading is allowed but triggers
a leaked event E leaked), or silent (reading is allowed). Moreover,
she is always allowed to learn the length of m and the (non-
confidential) associated data ad.

• The adversary decides when receiving becomes possible, i.e., the
message in principle is delivered. Once this happens, the receiver
R can try to fetch the message. This has two possible outcomes:
either he receives a message and an according received event is
triggered, or he receives ⊥ and an error event (indexed by an error
code from Errors) is triggered. Which case happens is determined
by the delivery function D, which takes into account the event
history and on whether the message that R tries to fetch is the same
as the one input by S (or an injected value from the adversary).
The latter condition is denoted by the flag same. The flag same

6.2. The Unified Composable Statement 131

Resource Chid,S→R
L,I,S,R,Errors

Parameters:
• Identity id (optionally), and interfaces S (sender) and R (receiver)
• Set of Errors that can occur
• Functions L(E) ∈ {true, false, silent} (can leak), S(E) ∈ {true, false}

(can send), R(E) ∈ {true, false} (can receive) and D(E, same) ∈ Errors ∪
{msg} (delivery outcome)

Events: Esent, E leaked, E received(same),
Eerror(err,same) for same ∈ {true, false} and err ∈ Errors

Initialization
mS, adS,mR, adR, cmd, same ← ⊥

Interface S
Input: (send,m, ad) ∈ M×AD

require cmd = ⊥
if ¬S(E) then output ⊥
(mS, adS)← (m, ad)
E +← Esent

output ok

Input: isAvailable
output S(E)

Interface R
Input: receive

require only called once
if ¬R(E) ∨ cmd = ⊥ then

output ⊥

// same messages (no injection)?
if same = check then

same ← ((mR, adR) = (mS, adS))

// outcome: an error or the message
out ← D(E, same)
if cmd = dlv ∧ out = msg then
E +← E received(same)

output (mR, adR)
else if cmd = (err, err,Overw)

∧(out = msg∨out ∈ Overw)
then
E +← Eerror(err,same)

output ⊥
else
E +← Eerror(out,same)

output ⊥

Input: isAvailable
output R(E) ∧ cmd 6= ⊥

Interface E
Input: read

if L(E) = false then output ⊥
else if L(E) = true then E +← E leaked

output (mS, adS)

Input: readLength
output (|mS|, adS)

Input: (deliver,m, ad, same′)
∈ (M∪ {fwd})×AD

× {check, false}
require cmd = ⊥

// handle forwarding request
if m = fwd then

if mS = ⊥ then output ⊥
else m← mS

// store for receiving
(mR, adR, same)← (m, ad, same′)
cmd ← dlv
output ok

Input: (error, err,Overw,m, ad, same′)
∈ Errors× 2Errors ×M×AD

× {true, false, check}
require cmd = ⊥

// (m, ad) only to determine same
if same′ = check then

(mR, adR)← (m, ad)

// store for receiving
same ← same′
cmd ← (err, err,Overw)
output ok

Figure 6.2: The single-message channel.

132 Chapter 6. A Case Study: Secure Messaging

is also exposed as part of the received or error event E received(same)

or Eerror(err,same), respectively.

• When the adversary decides that receiving is possible, she has two
options: schedule the delivery of (m′, ad′) (command deliver),
or force an error err ∈ Errors to be triggered (command error).
In the first case, she can also request to just forward the sender’s
message (if one exists), using m′ = fwd. Moreover, for technical
reasons1 , she can also insist that once the receiver fetches the
message, same = false is used even if the messages match. In
case the adversary forces an error err and the outcome of receiving
would anyway be a (different) error, the existing error can either
be overwritten or preserved. She can control this by specifying a
set Overw of errors that should be overwritten.

A note on confidentiality. In our channel, the E received(same) and
Eerror(err,same) events indicate whether the message that Eve injected
was the same as the sender’s. Since we assume that those events are in
principle observable by everybody, including the adversary, those events
can partially breach confidentiality if the communication is not properly
authenticated. However, those events are crucial to phrase the post-
impersonation guarantees of certain ratcheting protocols. In fact, in
those protocols Eve could usually inject her own message (after exposing
the sender’s state), observe whether it causes the communication to
break down, and thereby deducing whether the sender wanted to send
the same message afterwards. Our events simply reflect this.

6.2.3 Memory and Randomness Resources
An integral part of secure messaging protocols is the assumption that the
parties’ state, and sometimes also randomness, can leak to the adversary.
In Constructive Cryptography everything that can be accessible by
multiple parties, here the honest party and Eve, must be modeled as
a resource. As a consequence, all of our converters will be stateless

1The simulator might need this capability, e.g., if two (abstracted away) cipher-
texts decrypt to the same message. Note that providing additional capabilities to
the adversary in the real world only strengthens the statement and directly implies
the construction where this capability is removed.

6.2. The Unified Composable Statement 133

and deterministic. (Stateless means that the converter cannot keep
state between two separate invocations at the emulated interfaces.)
The statements will contain explicit memory and randomness resources
instead. These resources are formally defined in Figure 6.3 .

On a high level, we consider two types of memory resources: (1)
an insecure memory IMemid,U, and (2) a potentially secure memory
Memid,U. The former is multiple-use and its current content is always
available to the adversary. On the other hand, a secure memory can
be written to at most once. It can also be securely erased at any later
time. Moreover, it is parameterized by a can-leak predicate L, that
specifies whether the content is available to the adversary. When the
adversary successfully reads the contents, a leaked event is triggered.2

Observe that each memory can leak independently, which leads to
more fine-grained statements compared to prior work where it was
usually assumed that either the entire state leaks or not (a state often
consists of many secret keys from different sub-protocols, which we
put in different memories). Nevertheless, it does not appear to incur
additional significant complications.

Defining a potentially leakable randomness resource is a bit subtle.
In principle, the idea is that the randomness can leak to the adversary
at the moment it is used (modeling that it is sampled fresh at this
point and is not stored) by the honest party. However, this cannot be
directly expressed like this due to the activation model of the version
of Constructive Cryptography used (recall that the output is given at
the same interface the input was given). Hence, we model randomness
resources that can be in one of two states: leakable or not (as specified by
the flag leaks). If the can-leak predicate evaluates to true, the adversary
can switch the state to leakable by sending triggerLeaking, which
also triggers the leaked event. When the resource is used by the honest
party, fresh randomness is sampled. Additionally, if at this time the
state is leakable, then the sampled value is stored and the adversary
can read it at any time afterwards.

2Rewritable secure memory can then be modeled as the parallel composition
of many write-once memory cells. The memory requirement of a protocol is not
determined by the number of such write-once memories, but rather by the maximal
number of them in use at any time.

134 Chapter 6. A Case Study: Secure Messaging

Resource IMemid,U

Parameters: identity id, interface U.

Initialization
st← ⊥

Interface E
Input: read

output st

Interface U
Input: read

output st

Input: (write, v) ∈ {0, 1}∗
st← v
output ok

Resource Memid,U

Parameters: identity id, interface U,
can-leak predicate L.

Events: E leaked

Initialization
st← ⊥

Interface U
Input: read

output st

Input: (write, v) ∈ {0, 1}∗
require only called once
st← v
output ok

Input: erase
st← ⊥
output ok

Interface E
Input: read

if ¬L(E) then output ⊥
if st 6= ⊥ then E +← E leaked

output st

Resource Randid,U

Parameters: identity id, interface U,
randomness-space R, can-leak
predicate L.

Events: E leaked

Initialization
r ← ⊥
leaks← false

Interface U
Input: sample

require only called once
r � R
output r

Interface E
Input: triggerLeaking

require sample not called yet
if ¬L(E) then output ⊥
leaks← true
E +← E leaked

output ok

Input: getLeakage
if leaks then output r
else output ⊥

Figure 6.3: Formal definition of the memory and randomness resources.

6.3. Unifying Ratcheting: Two Examples 135

6.3 Unifying Ratcheting: Two Examples
In this section, we get acquainted with how the security guarantees of
ratcheting protocols can be phrased within our model. To this end, we
model the guarantees of two components of actual ratcheting protocols.

As a first example, we consider a simple authentication scheme that
appears in [JS18 ; DV18 ; JMM19a]. Using this example, we demonstrate
how our framework allows for a fine-grained modularization, with the
overall security then directly following from composition. As a second
example, we consider the use of hierarchical identity-based encryption,
as in [Poe18 ; JS18]. In this example, we moreover employ interval-wise
guarantees to avoid the commitment problem of composable security.

6.3.1 A Simple Authentication Scheme
We first consider a simple unidirectional authentication protocol, which
is designed with the strong guarantees of secure messaging in mind:
the authentication guarantees should not only be forward secure but
also heal after a state or randomness exposure of either party. Slight
variations of this protocol have been used in [JMM19a] (without the
hash) and [DV18] (using signcryption). Essentially the same idea also
appeared in [JS18], where, however, a stronger signature primitive with
updatable keys is considered, leading to the protocol being formalized
in the bidirectional setting.

The protocol

In the protocol, whenever the sender wants to send a message, a fresh
signing and verification key pair is sampled. The fresh verification key
is then signed together with the message—using the prior signing key—
and the message, the verification key and the signature are transmitted.
Finally, the old signing key is securely erased and the fresh one stored
instead. The receiver, on the other hand verifies a received message
with the previous verification key and stores the new one. The scheme
is depicted in Figure 6.4 .

Recall that we aim to make a strong construction statement that
considers how the scheme enhances any preexisting security guarantees,
including confidentiality. Usually preserving confidentiality is not a goal

136 Chapter 6. A Case Study: Secure Messaging

Alice Bob

sk0, vk0 vk0
m1, h1, vk1, σ1

sk1, vk1

vk1(sk2, vk2)← Sig.KeyGen
h2 ← hash(vk1)

σ2 ← Sign(sk1, (m2, h2, vk2))

m2, h2, vk2, σ2 hash(vk1) ?= h2
Verify(vk1, (m2, h2, vk2))

sk2, vk2
vk2

Figure 6.4: The simple scheme for unidirectional authentication.

that is considered for an authentication protocol, moreover, it is known
that the authenticate-then-encrypt approach used in old versions of
TLS is not generally secure [Kra01]. Nevertheless, we show that the
scheme actually achieves this at the cost of assuming unique signatures
instead of unforgeable ones (analogous to [JS18]), and with a minor
modification: with each message, the sender also transmits a hash of
the previous verification key. Such a hash is also present in the protocol
from [JS18], and allows the receiver to check whether he is using the
correct verification key.

The guarantees

Clearly, the protocol achieves authenticity if neither party’s state is
exposed. Moreover, Bob’s state only consists of public information. If
Alice’s state gets exposed, then Eve obtains her current signing key that
she can use to impersonate Alice towards Bob at this point in time.
However, this key is useless to tamper with previous messages, even if
they have not been delivered yet (forward security). More importantly,
if, for some reason, Alice’s next message containing a fresh verification
key still is delivered without modification, then the signing key obtained
by the adversary becomes useless thereby achieving the healing property.
Hence, the adversary can inject the i-th message if and only if Alice’s
state between the (i− 1)-st and i-th message got exposed, or there has
already been a successful injection before.

Expressing the scheme’s security guarantees in a game-based manner

6.3. Unifying Ratcheting: Two Examples 137

turned out to be surprisingly involved compared to the scheme’s simplic-
ity and how easy it seems to intuitively describe its guarantees. Notably,
to show its security, in [JMM19a] the abstraction of a key-updating
signature scheme, as well as its corresponding correctness and security
games, have been introduced. See Appendix C.1.1 for the corresponding
definitions. This raises a couple of questions: can’t we do simpler?
What is the right security statement to make about this quite simple
protocol, and what happens if the channel already provides certain
authenticity or confidentiality guarantees? In the following, we try to
answer these questions.

The construction statement

First, note that we consider the authentication of messages directly,
and do not introduce an intermediate signature notion. Secondly, we
consider authenticating the i-th message only, and to this end consider
the (i − 1)-st message where the fresh verification key is transmitted
(we do not authenticate this message here) and the i-th message that is
then signed under the corresponding signing key. Authenticating the
(i − 1)-st message, and all others, is then taken care of by iteratively
applying the protocol, with the overall security directly implied by the
composition theorem. This leads to the following real world resources

Rauth
i :=

[
Chi−1,A→B,Chi,A→B,Randkgi,A,Memski,A, IMemvki,B

]
, (6.1)

where besides the two channels the sender also has a memory to store
the new signing key, and the receiver a (insecure) memory to store the
verification key. Furthermore, the sender also has an explicit randomness
resource available (note that we only need key-generation randomness,
since unique signatures are deterministic). The corresponding proto-
col authi := (sigi, vrfi), consisting of the pair of converters that are
connected to Alice’s and Bob’s interfaces of Rauth

i , respectively, simply
implement the previously described protocol. A formal description of
those protocol converters can be found in Appendix C.1.2 .

The goal of the protocol is then phrased as constructing the following
ideal-world resource

Sauth
i :=

[
Chi−1,A→B,Chi,A→B

]
, (6.2)

138 Chapter 6. A Case Study: Secure Messaging

in which the channels can also trigger an error sig-err, indicating that the
signature verification failed, in addition to the errors from the real-world
counterparts.

The authentication guarantees for the i-th channel can then be
expressed via the following delivery-function, which guarantees that an
injection attempt (¬same) when the key is not known will causes a
signature-verification error sig-err, and preserves preexisting authenticity
(recall that Ẽ := τ(E) denotes the real-world’s event history):

D
Sauth
i

Ch(i,A→B)(E , same) :=

err if DRauth

i

Ch(i,A→B)(Ẽ , same) = err
∧err 6= msg

msg else if same ∨ E sk-known
i

sig-err else

(6.3)

where in a slight abuse of notation, we define a composed event E sk-known
i ,

which is triggered as soon as it is not excluded that the signing key
corresponding to Bob’s verification key is known to Eve:

E sk-known
i := E injected

Ch(i−1,A→B) ∨ E
leaked
Rnd(kgi,A)

∨
(
E sent

Ch(i−1,A→B) ≺ E
leaked
Mem(ski,A) ≺ E

sent
Ch(i,A→B)

)
.

On the flip side, the scheme limits the availability of the channels to
be sequential. While sending messages in order is natural for Alice, the
protocol restricts Bob to receive them in order as well. We can express
this using the following predicates.

S
Sauth
i

Ch(i,A→B)(E) := S
Rauth
i

Ch(i,A→B)(Ẽ) ∧ E sent
Ch(i−1,A→B), (6.4)

R
Sauth
i

Ch(i,A→B)(E) := R
Rauth
i

Ch(i,A→B)(Ẽ) ∧ E received
Ch(i−1,A→B). (6.5)

Note that our model simply forces us to make this restriction explicit,
whereas this is often just hard-coded in games.3

All other predicates are preserved, e.g. LSauth
i

Ch(i,A→B)(E) := L
Rauth
i

Ch(i,A→B)(Ẽ).
The security of the protocol can then be phrased as constructing the ideal
world Sauth

i from the real world Rauth
i , as summarized in the following

theorem.
3Actually, many recently proposed secure-messaging protocols do have this re-

striction, which might limit their usability as pointed out by [ACD19].

6.3. Unifying Ratcheting: Two Examples 139

Theorem 6.3.1. Let authi := (sigi, vrfi) be the authentication protocol
described above. Let Rauth

i be as in (6.1), and let Sauth
i be as in (6.2), with

the guarantees and restrictions as described in (6.3), (6.4), and (6.5),
respectively, and all others guarantees unchanged from Rauth

i . Then, if
we map the event Eerror(sig-err,same)

Ch(i,A→B) to E received(same)
Ch(i,A→B) , we have

Rauth
i

authi−−−−→
asympt

Sauth
i ,

if the underlying signature scheme is unforgeable with unique signatures,
and the hash function is collision resistant.

Proof. The proof is found in Appendix C.1.3 . Note that compared to a
normal signature-scheme proof it is quite involved, which is the main
price we pay for our much stronger statement.

Extending to many messages

So far, we only considered a world where Alice sends two messages, of
which the second is authenticated. In a realistic setting, Alice can of
course send many messages where all of them should be authenticated.
In this section, we see how the composition theorem of Constructive
Cryptography can be applied to directly get the desired result.

In particular, we start with a sequence of possibly unauthenticated
channels Chi,A→B for i ∈ [n], where the authentication of Ch0,A→B can
be seen as a setup assumption (it is standard to assume that Alice and
Bob initially share a signing-verification key pair). Then, we iteratively
apply the construction for two channels to Ch0,A→B and Ch1,A→B, then to
Ch1,A→B and Ch2,A→B, etc. (cf. Figure 6.5). The composition theorem of
CC guarantees that the composed protocol constructs the ideal world.

Corollary 6.3.2. Let Rauth and Sauth denote the following real and ideal
worlds

Rauth :=
[{

Chi,A→B}
i∈{0,...,n},

{
Memski,A, IMemvki,B

}
i∈[n]

]
,

and

Sauth :=
[{

Chi,A→B}
i∈{0,...,n}

]
,

140 Chapter 6. A Case Study: Secure Messaging

respectively. Moreover, let auth := ((sig1, . . . , sign), (vrf1, . . . , vrfn)) de-
note the protocol attaching the n converters to Alice’s and Bob’s respec-
tive interfaces. Then, we have

Rauth auth−−−−→
asympt

Sauth,

where for each i ∈ [n], ISauth

Ch(i,A→B), SSauth

Ch(i,A→B), and RSauth

Ch(i,A→B) are defined
as in (6.3), (6.4), and (6.5), respectively.

Ch0,A→B

Memsk1,A Memvk1,B

Ch1,A→B

Memsk2,A Memvk2,B

Ch2,A→B

sig1 vrf1

sig2 vrf2

Figure 6.5: The first two steps constructing a sequence of authenticated
channels: (1) The protocol (sig1, vrf1) constructs a hybrid world, where
the resources in the dashed box are replaced by two channels Ch0,A→B

and Ch1,A→B, where Ch1,A→B is authenticated as long as Ch0,A→B is. (2)
(sig2, vrf2) constructs the ideal world, where Ch1,A→B and Ch2,A→B are
authenticated as long as Ch0,A→B is.

6.3.2 Confidentiality from HIBE
In the following we discuss a protocol from [JS18] that uses hierarchical
identity-based encryption (HIBE) to add confidentiality to a sequence of
channels. The protocol was designed for a challenging setting, where we
do not assume authentication (as is usually done when talking about
encryption). The reason is that in secure messaging authentication

6.3. Unifying Ratcheting: Two Examples 141

cannot be guaranteed when the sender’s state is exposed. This situation
fits perfectly to our framework.

The protocol is described in the so-called sesqui-directional setting,
introduced in [Poe18], meaning that the messages from both directions
are considered, but only the guarantees of one of the directions are
under concern—here from Alice to Bob. The bidirectional guarantees
then follow directly from composition.

Hierarchical identity-based encryption

A HIBE scheme consists of the following four algorithms:

• A setup generation algorithm (mpk,msk)← HIBE.Setup(1κ; r),
generating the root master public and secret keys, i.e. sk() = msk.

• A key-generation algorithm skid‖idn ← HIBE.Kgen(skid, idn),
where (id ‖ idn) := (id1, . . . , idn−1, idn) for an identity vector
id = (id1, . . . , idn−1).

• An encryption algorithm c← HIBE.Enc(mpk, id,m; r).

• A decryption algorithm m← HIBE.Dec(skid, c).

We require the HIBE scheme to be IND-CCA secure with certain
additional properties that are not guaranteed by IND-CCA itself, but
that most schemes do provide (see Appendix C.2.2 for details).

The protocol overview

On a high level, the protocol proceeds in epochs, where in each epoch
Bob sends one message to Alice, and then Alice sends a sequence of
messages to Bob. In particular, Bob’s message contains a fresh HIBE
public key mpk. For simplicity, consider the first epoch, as depicted in
Figure 6.6 . When Alice sends her i-th message, she encrypts it with
mpk, using as the identity (the hashes of) all ciphertexts she sent before.
Whenever Bob receives a ciphertext ci, he decrypts it, derives the secret
key for the new identity (with ci appended) and erases the old key.

In the next epoch, Bob sends a new public key mpk′, and we repeat.
One subtle issue is how to run the epochs together. Note that, for
example, Bob may send a number of public keys without receiving

142 Chapter 6. A Case Study: Secure Messaging

Alice Bob

sk()
c1←HIBE.Enc(mpk,(),m1) c1

(c1)
m1←HIBE.Dec(sk(),c1)

sk(c1)←HIBE.Kgen(sk(),c1)

sk(c1)
c2←HIBE.Enc(mpk,(c1),m2) c2

m2←HIBE.Dec(sk(c1),c2)

sk(c1,c2)←HIBE.Kgen(sk(c1),c2)

sk(c1,c2)

(c1, c2)

Figure 6.6: The first epoch of the sesquidirectional HIBE protocol.

a response, in which case he has to store secret keys from a number
of epochs. A fresh secret key is stored for the empty identity, and
when Bob receives a ciphertext, he updates all currently stored secret
keys. This means that Alice uses for encryption of the i-th message a
truncated transcript (cr, . . . , ci−1). In order for her to compute it, Bob
sends with each public key the index r of the last message he received. A
graphical depiction of the full protocol can be found in Appendix C.2.1 .

Security intuition

Intuitively, this use of HIBE allows to achieve three goals. The first is
healing, achieved by exchanging fresh keys, as in most secure-messaging
schemes. The second is forward secrecy: exposing the secret key after the
i-th message is received does not affect the confidentiality of messages
m1, . . . ,mi−1. This holds, since Bob updated all the secret keys with
the identity ci in the meantime. Healing and forward secrecy could
also be achieved by a forward-secure PKE scheme. The last goal is the
so-called post-impersonation security: an active injection destroys the
decryption keys, so that its leakage exposes no messages. For this we
need the hierarchy of identities. Roughly, injecting a message c′i causes
Bob to update his key to sk(cr,...,c′i). This key gives no information
about messages encrypted by Alice, since those will be for another
identity (cr, . . . , ci).

6.3. Unifying Ratcheting: Two Examples 143

The construction statement

To formalize these guarantees as a construction statement, we first have
to describe the real world in which the protocol is executed. It consists
of n channels from Alice to Bob (which the protocol protects) and n
channels in the opposite direction on which the master public keys are
transmitted. Moreover, Alice has memories to store the public keys and
the transcript, and randomness resources for the encryption. Bob, on
the other hand, has memories to store the secret keys and randomness
resources for the key generation:

Rhibe :=
[{

Chi,A→B}
i∈[n],

{
Chj,B→A}

j∈[n], IMempk,A,
{

Randkgj ,B
}
j∈[n],{

Memtri,A, Randenci,A
}
i∈[n],

{
Memsk(j,i),B

}
j∈[n],i∈[n+1]}

]
, (6.6)

where the index i indicates that the resource is related to transmitting
the i-th message from Alice to Bob, and the index j indicates the j-th
epoch. A formal description of the pair of converters implementing the
protocol hibe := (hibe-enc, hibe-dec) can be found in Appendix C.2.1 .

The goal of the protocol is to enhance the confidentiality of the
channels. Thus, the same set of channels is present in the ideal world,
while the memory and randomness resources are used up:

Shibe :=
[{

Chi,A→B}
i∈[n],

{
Chj,B→A}

j∈[n]

]
. (6.7)

Moreover, the ideal channels can trigger an additional error dec-err,
indicating that decryption failed (this error event corresponds to the real-
world delivery event when the adversary injects an invalid ciphertext).

We now proceed to formalize the confidentiality guarantees of Shibe

by defining in which situations the i-th message might be known to the
adversary:

The randomness leaked: If the encryption randomness leaked to the
adversary, i.e., E leaked

Rnd(enci,A), then no PKE scheme can provide (full)
confidentiality.

The master public key was set by Eve: If Alice encrypts using a master
public key (potentially) set by Eve, Eve can trivially decrypt.
That is, if Alice used the j-th master public key and E injected

Ch(j,B→A).

144 Chapter 6. A Case Study: Secure Messaging

The secret key leaked: Assume Alice sent the i-th message during the
j-th epoch, and let sk(j,i) denote the secret key that Bob uses
to decrypt that message. If Eve learned sk(j,i), the message is
obviously not confidential, which either happens if the randomness
used to generate the master secret key leaked or a key that allows
to compute sk(j,i) leaked from Bob’s memory:

E sk-leaked
i,j := E leaked

Rnd(kgj ,B) ∨ ∃k ∈ [rj , i] :
(
E leaked

Mem(sk(j,k),B)

∧ ∀` ∈ [rj , k] : ¬E injected
Ch(`,A→B)

)
,

where rj denotes the first message Bob received after sending
the j-th public key (rj is determined by the sent and received
events in E). Note that the last condition explicitly encodes the
post-impersonation guarantee, meaning that sk(j,k) is only useful
as long as Eve did not destroy it by injecting her own ciphertext.
Forward-secrecy and healing, on the other hand, are encoded
implicitly by the order in which those events can happen in the
real world. We can make them more explicit by observing

E sk-leaked
i,j ⇐⇒ E sent

Ch(j,B→A) ≺ E
sk-leaked
i,j ≺ E received

Ch(i,A→B),

where the former condition denotes healing and the latter forward-
secrecy.

In summary, we can define the following event denoting that the i-th
message is insecure

Eexposed
i := E leaked

Rnd(enci,A) ∨ E
injected
Ch(ji,B→A) ∨ E

sk-leaked
i,ji ,

where ji denotes the epoch in which the i-th message has been sent
(which is computable from the order of events in E), leading to

LShibe

Ch(i,A→B)(E) :=
{

silent if Eexposed
i

false otherwise.
(6.8)

Notice that the above can-leak function fully overwrites any real-world
guarantees, and silences the leaked events. This is because in the proto-
col Alice stores the communication transcript. As a consequence, when

6.3. Unifying Ratcheting: Two Examples 145

her memory leaks, the ciphertext leaks as well, even if the assumed chan-
nel was in fact confidential. Moreover, this leakage does not correspond
to the channel leaked event.

Analogous to the authentication scheme of the previous section, the
HIBE scheme also limits the availability of the channels to be sequential,
due to the hash-transcript used as identities. Moreover, Alice can
obviously only encrypt using master public keys she received the public
key. This could be made formal using the can-send and can-receive
predicates S and R, respectively, analogous to the previous section.

Avoiding the commitment problem

As described so far, the real and ideal world hibe Rhibe and σEShibe,
respectively, are easily distinguishable for any simulator σE due to the
commitment problem. Namely, if the distinguisher chooses to first see a
ciphertext and then leak the corresponding decryption key, this cannot
be simulated as the simulator first has to output a fake ciphertext,
before getting to know the message, and then explain it by outputting
a corresponding decryption key. For normal PKE, and especially HIBE,
schemes this is impossible. Since we are nevertheless interested in
composable expressing what the scheme actually does achieve, we apply
our methodology of interval-wise guarantees from Chapter 5 to overcome
the impossibility.

In principle on could provide very fine-grained guarantees using
interval-wise guarantees: for each of the n individual messages, one could
guarantee confidentiality until the adversary can trivially decrypt, using
the intersection of n specifications. Here, we however opt fore a simpler
construction statement that simply reflects the game-based definition.
That is, we simply consider a single interval from the beginning of
the experiment until any trivial impossibility causing the commitment
problem. In summary, analogous to how the games disable certain
oracles to prevent trivial impossibilities, we consider only guarantees
until the adversary obtains the secret key To this end, we disallow the
adversary from obtaining a secret key sk(j,i) that would allow to trivially
identify a fake ciphertext. That is, we define the following indicator
events

Ecom-prob
j,i := E leaked

Mem(sk(j,i),B) ∧ ∃k > i :
(
Ecommitted
k,j ≺ Eexposed

k

)
, (6.9)

146 Chapter 6. A Case Study: Secure Messaging

where Ecommitted
i,j denotes the event that the simulator commits on the

i-th ciphertext, and that it was encrypted under mpkj . More concretely,
this happens if the distinguisher

• explicitly asked for the ciphertext;

• requested a hash-transcript that depends on the ciphertext;

• requested a secret key for which the identity depends on the
ciphertext;

• actively injected a ciphertext that got decrypted under a secret
key whose identity depends on the ciphertext under consideration,

leading to the following definition

Ecommitted
i,j := (ji = j) ∧

(
E leaked

Ch(i,A→B) ∨ E
leaked
Mem(tri,A) ∨

(
¬E injected

Ch(i,A→B)

∧ ∃k ≥ i :
(
E leaked

Mem(sk(j,k)) ∨ E
injected
Ch(k,A→B)

)))
,

where again ji denotes the epoch in which the i-th message has been
sent.

Summary and analysis

The HIBE-based scheme achieves the so far described construction,
with one exception: to provide more power to the simulator and make
the construction statement provable, we need to silence the real-world
channels’ leaked events after the message is exposed, i.e, LRhibe

Ch(i,A→B) is
arbitrary, except that if Eexposed

i , it no longer evaluates to true.4

Observe that while having to silence the leakage event in the real
world limits reusability, the statement for instance is still generic enough
to be composed with the authentication scheme from the previous
section: if the real world is restricted like this (in the end, those events
are just a mean to phrase dependencies and carry no real semantics),
then the signature scheme, which preserves the can-leak predicate, and
afterwards the HIBE scheme can be applied.

Overall, we have the following theorem, proved in Appendix C.2.2 .
4This doesn’t affect Ecommitted

i,j , that only considers leakage events before Eexposed
i .

6.4. Adaptive Security 147

Theorem 6.3.3. Let Rhibe be as in (6.6) with the restriction described
above, and let Shibe be as in (6.7) with the confidentiality guarantees from
(6.8), and in-order sending and receiving. Moreover, let Ecom-prob :=∨
j,i E

com-prob
j,i denote the event that the commitment problem occurs,

where Ecom-prob
j,i is as in Equation (6.9) . Then, if we map the event

Eerror(dec-err,same)
Ch(i,A→B) to E received(same)

Ch(i,A→B) , we have

Rhibe hibe,[true,Ecom-prob]−−−−−−−−−−−−→
interval-asym

Shibe,

if the HIBE scheme is IND-CCA secure with our additional assumptions.

6.4 Adaptive Security
All protocols considered so far, and most of the ones in the literature,
only achieve an interval-wise construction statement due to the com-
mitment problem. While such a statement intuitively appears to be
sufficient to guarantee confidentiality as well as authenticity of the mes-
sages, there might nevertheless be reasons to aim for the full traditional
simulation-based security notion. For instance, (full) simulation-based
security appears to be closely linked to deniability—another important
property of secure messaging schemes.

Hence, in this section, we consider SM schemes that tolerate a fully
adaptive adversary, i.e, allow to “explain” ciphertexts whenever needed
due to leakage of secret keys. In particular, we present a technique
that, given an SM protocol that is subject to the commitment problem,
allows to construct an adaptive SM (ASM) protocol with almost the
same guarantees, but that achieves fully adaptive security. This comes
at the cost of efficiency and being able to send only a fixed number
of messages without interaction. Applied to protocols with optimal
security [JS18 ; Poe18], our technique enables even stronger guarantees.5

As an example, we apply it to the HIBE protocol from Section 6.3.2 .
Note that while the technique we use is essentially a general compiler

that “removes” the commitment issue, formally phrasing such a theorem
5In game-based definitions, one can think of the “corrupt” oracle not being

silenced even if the challenge has been issued, but instead outputting the secret state
corresponding to the challenge bit 0.

148 Chapter 6. A Case Study: Secure Messaging

would be rather cumbersome for at least two reasons. First, there is
not just one game-based defintion of an SM scheme that could be lifted
and, second, we require the specific simulation technique encoded in
most game-based definitions, in contrast to the existential simulator of
our constructive SM statements.

6.4.1 Overview
Receiver non-committing encryption. The technical tool we use
to construct adaptively-secure secure-messaging (ASM) schemes with op-
timal security is so-called receiver non-committing encryption (RNCE),
introduced by Canetti et al. [CHK05]. Intuitively, in RNCE schemes,
key generation outputs an additional trapdoor z, ignored by honest par-
ties and used by the simulator. Then, there are two ways to generate a
ciphertext: (1) an “honest” ciphertext is computed in the standard way
c← RNCE.E(pk,m) (so, as in any encryption scheme, it is a commitment
to the message), (2) a “fake” ciphertext is computed (by the simulator)
without the message, but with the secret key sk and the trapdoor z
as c̃← RNCE.F(pk, sk, z). Given a fake ciphertext c̃ and any message
m, one can compute a secret key s̃k ← RNCE.R(pk, sk, z, c̃,m) that
explains the message-ciphertext pair (such that RNCE.D(s̃k, c̃) = m).
Moreover, the distributions (c, sk) (as in the real world) and (c̃, s̃k) (as
in the simulation) are indistinguishable. This allows to explain a single
ciphertext per public key.

The scheme. At a high level, the authors of [CHK05] use RNCE
to construct non-committing forward-secure public-key encryption by
encrypting with a standard forward-secure public-key scheme RNCE
ciphertexts instead of messages. We generalize this idea (and the
simulation technique) to SM protocols. In particular, we can construct
an ASM scheme by taking a standard SM scheme that is subject to
the commitment problem, i.e., satisfies only an interval-wise guarantee,
and sending, instead of messages, their RNCE encryptions, where each
message is encrypted with a different public key. When a message
is received, the secret key is immediately deleted. (For the moment,
assume that whenever Alice sends a message, an RNCE key pair is
“magically” generated — Alice uses the public key, and the secret key
immediately appears stored in Bob’s state.) This way, the modified

6.4. Adaptive Security 149

scheme inherits all guarantees of the original SM scheme. Furthermore,
it can be simulated in the adaptive setting, as we will see below.

Let us now address the problem of how the RNCE keys are dis-
tributed. One trivial solution would be to include ` key pairs as part
of the setup: the parties send their ` public keys at the beginning over
an authenticated channel. First, this way we can send only ` messages
overall. But even worse, the RNCE keys do not heal: when the receiver
is corrupted for the first time, the simulator can explain all messages
sent so far, but it also has to commit to all RNCE secret keys. Hence,
adaptive security is never restored. To deal with this, we use the tech-
nique used in all SM schemes: we send with each message an update,
consisting of ` fresh RNCE public keys. In particular, Alice (Bob will
proceed analogously) stores some public keys previously received from
Bob. When she sends the i-th message, she RNCE-encrypts it with one
of the unused public keys, generates ` new key pairs, stores the secret
keys, and sends the RNCE ciphertext, the ` public keys and i to Bob
over the channel constructed by an SM scheme. Bob stores the greatest
index i he has seen so far. Whenever he sees a messsage with a greater
i, he ignores all RNCE public keys he has and replaces them by the `
newly received ones. Unlike in the first trivial solution, in the above
protocol adaptive security is restored as fast as possible: with the first
new message delivered from the other party.

Simulation. We give an intuition of how the above protocol can be
simulated. Assume that the SM scheme has the standard simulator, as
hard-coded in most game-based definitions. In particular, he executes
the protocol, and when a memory is exposed, he shows to the distin-
guisher the real state. For ciphertexts corresponding to confidential
messages it shows encryptions of 0’s, while for non-confidential ones it
shows encryptions of the actual message.

In the adaptive setting, the real and the ideal world are easily
distinguishable for that simulator. This is because when a message is
sent as confidential, and later the memory is exposed, the distinguisher
sees in the ideal world the encryption of 0’s. However, we can fix
this with our new scheme: the new simulator encrypts, instead of 0’s,
a fake RNCE ciphertext to generate a ciphertext corresponding to a
confidential message. When a memory is corrupted, he receives the
message (which, of course, can no longer be confidential) and computes

150 Chapter 6. A Case Study: Secure Messaging

the fake RNCE secret key according to the fake ciphertext. RNCE
guarantees that this is indistinguishable from the real world, where we
have honest ciphertext and an honest key.

A note on efficiency. First, observe that using a symmetric non-
committing encryption scheme, such as the one-time pad, instead of
RNCE would not work. This is because in many SM schemes corrupting
the sender has no effect on confidentiality, implying that upon such
a corruption, the simulator needs to output a key of the symmetric
non-committing scheme without knowing the messages (which trivially
breaks against a distinguisher knowing the message).

Moreover, while our construction of using nested encryption ap-
pears to be redundant, it can be observed that using RNCE only
would not suffice. This is because SM schemes can provide certain
advanced confidentiality guarantees not achieved by RNCE alone. For
example, the optimal schemes such as [JS18 ; Poe18] provide so-called
post-impersonation guarantees: once the adversary injects a message to
Bob (after corrupting Alice) and then corrupts Bob, all messages sent
by Alice afterwards are confidential.

Limitations. Our protocol requires a fixed upper bound on the num-
ber of messages a party can send without interaction (in particular,
after ` messages it needs a new set of public keys from the partner).
Unfortunately, overcoming this seems unlikely with our approach. This
is due to the impossibility result by Nielsen [Nie02b]. It essentially says
that a non-committing non-interactive public-key encryption scheme
requires that the length of a secret key is at least the overall length of all
messages encrypted. This means that we would need non-committing
encryption, where the public and secret keys are updated, in other words,
a non-committing equivalent of HIBE. To the best of our knowledge,
this does not exist yet.6

6Note that the impossibility of [Nie02b] also rules out a solution where Alice
RNCE-encrypts for Bob a new RNCE secret key, used for the next message — this
secret key would leave no space for the message.

6.4. Adaptive Security 151

6.4.2 Combining RNCE with HIBE
Recall that the HIBE protocol from Section 6.3.2 is designed for the
sesqui-directional setting, where it protects the confidentiality of mes-
sages sent by Alice. In the protocol, Bob sends to Alice HIBE master
public keys, which results in epochs. In epoch j, Alice uses the j-th
master public key to encrypt her messages with the transcript as identity.
In this section we consider the analogous setting for the ASM protocol,
consisting of RNCE composed with HIBE. That is, Bob sends ` RNCE
keys alongside the HIBE keys, and Alice uses them to additionally
encrypt her messages.

Hence, for the ASM construction we need in the real world the
additional randomness Randrenci,A for RNCE-encrypting the i-th mes-
sage and Randrkgj ,B for generating the j-th set of ` keys, compared to
the real world from the HIBE protocol. Moreover, we have memories
Memrsk(j,k),B for storing the k-th RNCE secret key, generated in epoch
j, and insecure (rewritable) memories IMemrpk,A for storing the set of
RNCE public keys. Overall, the real-world resources are as follows.

Rad-hibe :=
[
Rhibe,

{
Randrenci,A

}
i∈[n],

{
Randrkgj ,B

}
j∈[n], IMemrpk,A,{

Memrsk(j,k),B
}
j∈[n],k∈[`]

]
, (6.10)

where Rhibe should be understood as the same set of resources as in
Section 6.3.2 . The restrictions on those set of resources are dropped, on
the other hand, since we no longer need work around the commitment
problem. This implies, however, that we have to directly consider secu-
rity of the overall compiled protocol, instead of using the construction
statement for HIBE and composition.7 A formal description of the
protocol rnce := (rnce-enc, rnce-dec) implementing the RNCE protocol
on top of the HIBE protocol is given in Figure 6.7 .

In the ideal world, we have the same 2n channels: Sad-hibe := Shibe.
Most properties of the constructed channels are the same as in the
HIBE construction. In fact, our adaptive protocol only affects (1)
availability — only ` messages can be sent without interaction, and (2)

7In general, the simulator for the SM scheme simply does not output the secret
state from the commitment-causing memories, and our ASM simulator cannot
generate it himself, since this would be inconsistent with the rest of the SM simulation.

152 Chapter 6. A Case Study: Secure Messaging

Converter rnce-enc

Emulating Int. A of Chi,A→B, i ∈ [n]
Input: (send,m, ad) ∈ M×AD

require only called once & isAvailable

// Read and update the state
call (j, k, PK)← read

at interface A of IMemrpk,A
call (write, (j, k + 1, PK))

at interface A of IMemrpk,A

// Encrypt end send
call r ← sample

at interface A of Randrenci,A
c← RNCE.E(PK[k],m; r)
call s← (send, c, (ad, j, k))

at interface A of Chi,A→B

return s

Input: isAvailable
call av ← isAvailable

at interface A of Chi,A→B

call (j, k,PK)← read
at interface A of IMemrpk,A

return av ∧ (j, k,PK) 6= ⊥ ∧ k ≤ `

Emulating Int. A of Chj,B→A, j ∈ [n]
Input: read

require only called once
call (m, (ad, PK))← read

at interface A of Chj,B→A

call (j′,_,_)← read
at interface A of IMemrpk,A

// Update the state if the keys are
newer than the stored ones.
if j = 1 ∨ j′ < j then

call (write, (j, 1, PK))
at interface A of IMemrpk,A

return (m, ad)

Input: isAvailable
call av ← isAvailable

at interface A of Chj,B→A

return av

Converter rnce-dec

Emulating Int. B of Chj,B→A, j ∈ [n]
Input: (send,m, ad) ∈ M×AD

require only called once & isAvailable

// Generate ` new key pairs
call r1, . . . , r` ← sample

at interface A of Randrkgj,B
for k ∈ [`] do

(pkk, skk)← RNCE.G(rk)
call (write, skk)

at interface B of Memrsk(j,k),B

call s← (write,m, (ad, [pk1, . . . , pk`]))
at interface A of Chj,B→A

return s

Input: isAvailable
call av ← isAvailable

at interface B of Chj,B→A

return av

Emulating Int. B of Chi,A→B, i ∈ [n]
Input: read

call (c, (ad, j, k))← read
at interface A of Chi,A→B

if (c, (ad, j, k)) = ⊥ then return ⊥

// Get the secret key and decrypt
call sk ← read

at interface B of Memrsk(j,k),B

if sk 6= ⊥ then
m← RNCE.D(sk, c)
call erase

at interface B of Memrsk(j,k),B

if m 6= ⊥ then return (m, ad)
else return ⊥

Input: isAvailable
call av ← isAvailable

at interface B of Chi,B→A

return av

Figure 6.7: The RNCE part of the adaptively-secure protocol in the
sesqui-directional setting.

6.4. Adaptive Security 153

confidentiality — we need to account for the additional randomness
and memory resources. Recall that the epoch ji in which message i is
sent by Alice is determined by the sent and received events. With this,
the restriction (1) can be expressed with the can-send and can-receive
predicate in a straightforward way.

Let us now focus on confidentiality. Recall that in the HIBE protocol,
the can-leak predicate was defined using the event Eexposed

i , denoting that
the i-th message sent by Alice is inherently insecure. We modify this
event to account for the additional resources used by RNCE. Specifically,
the message is exposed if the RNCE-encryption randomness leaks:
E leaked

Rnd(renci,A), or if the RNCE secret key leaks. The latter happens if
Bob’s key-generation randomness leaks: E leaked

Rnd(rkgji ,B), or if the secret key
memory leaks: E leaked

Mem(rsk(ji,ki),B), where the i-th message was the ki-th
one sent in its epoch. Overall, this leads to the following composed
event:

Eexposed-ad
i := Eexposed

i ∨ E leaked
Rnd(renci,A) ∨ E

leaked
Rnd(rkgji ,B) ∨ E

leaked
Mem(rsk(ji,ki),B).

The leakage function LSad-hibe

Ch(A→B) is then defined analogously to that of the
HIBE construction silent in case of Eexposed-ad

i , and false otherwise.
We stress that the need to include these additional cases only arises
from our fine-grained modeling of memory and randomness. In reality,
it makes sense to consider only one memory storing the whole secret
state, only one randomness for RNCE and HIBE encryption, and so
on. In such a model, the confidentiality of our adaptively secure scheme
and the non-adaptive one would coincide.

The security of our composed protocol is summarized in the following
theorem.

Theorem 6.4.1. Let Rad-hibe be as in (6.10), and let Sad-hibe be as in
above with the described confidentiality guarantees, in-order sending and
receiving, and the restriction to ` messages per epoch. Moreover, let
rnce ◦ hibe denote the protocol that for each honest party first applies
the respective hibe converter, and then the respective rnce converter. If
the HIBE scheme is IND-CCA secure with our additional assumptions,
then we have

Rad-hibe rnce◦hibe−−−−−−−→
asympt

Sad-hibe,

154 Chapter 6. A Case Study: Secure Messaging

under the same event mapping as in Theorem 6.3.3 .

Proof (Sketch). We sketch the simulator and simultaneously also argue
why this simulation strategy makes the two worlds actually indistin-
guishable. Note that we focus here only on the RNCE parts, referring
to the proof of Theorem 6.3.3 , as to why the HIBE scheme provides
proper healing, forward secrecy, and post-impersonation security.

The simulator essentially executes σhibe (cf. Appendix C.2.2), except
that it also internally samples all RNCE keys, including the trapdoors,
and instead of encrypting a zero-string, it encrypts a fake RNCE cipher-
text.

The randomness and public-key memory for RNCE are trivially
simulatable. Furthermore, all memory and randomness resources of
the HIBE construction are simulated as in σhibe. Clearly, we can also
simulate both the read and deliver for the channels from Bob to Alice,
where for instance same is determined analogous to σhibe just also taking
those public keys into account.

More interesting is the simulation of the channels from Alice to Bob
(whose confidentiality the scheme protects) and the memories storing
the corresponding RNCE secret keys. We consider three cases: (1) the
parties are in sync (before an active impersonation) and the adversary
simply forwards the message, (2) the parties are in sync and adversary
tries to inject a message, and (3) the parties are already out of sync.

In sync. Consider one channel and the associated secret key, where
the parties are in sync and the adversary does not carry out a
successful impersonation.
On every read input to the channel, the simulator outputs either a
proper encryption (if the message is known), or a HIBE-encryption
of a fake ciphertext. For the key leakage, there are the following
options:

• The distinguisher did not input the message to be encrypted
under that key yet. The simulator outputs the honest secret
key. Later on the read input to the channel, the message
will be known to the simulator due to our can-leak predicate.
Hence, the simulation is perfect.
• The message has been received. The simulator outputs ⊥,
since in the real world Bob would erase the key.

6.4. Asynchronous Ratcheting as CKA 155

• A message is in transmission. Due to our can-leak predicate,
this message is revealed to the adversary, so the simulator can
produce a fake secret key that explains it. Indistinguishability
follows from the security of RNCE.

For the deliver command, we proceed the same way as σhibe: we
either forward the message (if it is the same ciphertext), or trigger
an error (by our additional assumption on the HIBE scheme).

First injection. Consider now a channel, where parties are still in
sync, and the adversary tries to deliver her own message. We
proceed the same way as σhibe and just decrypt the ciphertext
and observe the result, where the following RNCE is used:

• If the simulator already output a fake RCNE secret key, then
it uses that one to decrypt.

• Otherwise, it uses the honest RNCE secret key. Here security
follows from the CCA1-security of RNCE: a fake key and
ciphertext are indistinguishable from the honest ones even
given decryptions of adversarially chosen messages under the
honest key before the fake key has been produced. Hence,
even if the simulator later has to provide a fake RNCE key
that explains Alice’s message, this is indistinguishable from
the real world.

Out of sync. Once the parties are out of sync, the adversary is allowed
to learn the RNCE-keys without revealing the messages to the
simulator (and thus allowing the simulator to output a fake secret
key). The confidentiality of all channels after an impersonation
attack is, however, guaranteed by the HIBE protocol, even if
Bob’s state is fully revealed to the adversary. Thus, the adversary
never actually gets to see the fake RNCE ciphertexts (which are
encrypted with the HIBE-scheme). As a consequence, the real
RNCE keys can be safely revealed.

156 Chapter 6. A Case Study: Secure Messaging

6.5 Asynchronous Ratcheting as Continu-
ous Key Agreement

Many secure messaging protocols, including Signal, proceed by combin-
ing some form of continuous key agreement (the asynchronous ratch-
eting layer) with a forward-secure symmetric encryption scheme (the
synchronous ratcheting layer). Thus, the continuous key agreement
primitive appears to be a natural abstraction boundary. Indeed, Alwen
et al. [ACD19] modularize and abstract Signal in this manner by for-
malizing a notion of Continuous Key Agreement (CKA), which they
then combine (with the help of a special PRF) with Forward-Secure
AEAD (FS-AEAD).

In this section, we outline how such a CKA notion can be naturally
expressed within our framework as a protocol that uses a given com-
munication network to construct a sequence of keys (while preserving
the communication network). We thereby focus on CKA only—the use
of FS-AEAD to achieve secure messaging would then follow along the
same lines as in [ACD19].

Continuous key agreement

We first briefly recall the CKA primitive, and refer to [ACD19] for
further details. The setting is that of interlocked (or ’ping-pong’)
communication over authenticated channels, initiated by Alice. This
means that in each odd round (which, following [ACD19], we call an
epoch), Alice sends a message to Bob, and in each even round Bob sends
a message to Alice. The goal is to provide a continuous stream of keys:
each sending and receiving operation outputs a symmetric key (later
used in the symmetric ratchet). This means that in each epoch (when a
single message is sent and received) the parties produce a new key in the
key stream (see Figure 6.8). Formally, a CKA scheme consists of four
algorithms, of which CKA.S is randomized and the others deterministic:

CKA.I-A (CKA.I-B): On input a shared secret k, output the initial state
γA of Alice (the initiator) (γB of Bob (the responder)).

CKA.S: On input a sending state γA, output a new receiving state, an
update message T (sent to the partner), and the next shared key
I.

6.5. Asynchronous Ratcheting as CKA 157

Alice Bob

γA
0 = CKA.I-A(k) γB

0 = CKA.I-B(k)

(γA
1, T1, I1)←
CKA.S(γA

0)I1
T1 (γB

1, I1)←
CKA.R(γB

0, T1) I1

γA
1 γB

1

(γA
2, I2)←

CKA.R(γA
1, T2)I2

T2 (γB
2, T2, I2)←

CKA.S(γB
1) I2

Figure 6.8: The synchronous execution of CKA, epochs 1 and 2. Alice
sends in odd epochs, while Bob sends in even ones. In epoch 1, the
parties produce the key I1, which is available to Alice (the initiator in
this key agreement) immediately, and to Bob (the responder) only after
he receives the message T1.

CKA.R: On input a receiving state γB and an update message T (received
from the partner), output a new sending state and the next shared
key I.

For correctness, we want that both parties produce the same key
stream. The standard security properties include indisitnguishability:
each key is indistinguishable from an (independent) random one, even
given a number of other keys. Moreover, in case of a secret-state
compromise, we require (1) forward secrecy: security of previously
generated keys is not affected, and (2) healing: after a number of epochs
since the last compromise, the security is restored. The scheme is
parameterized by ∆, denoting the number of epochs that need to pass
since epoch e until the state contains no information about the e-th key.
We refer to [ACD19] for a formal description of the CKA security game.

The constructed key stream

In contrast of the previously presented constructions, the goal of a CKA
protocol is not to enhance the guarantees of the channels (at least not
directly). Rather, the goal is to construct a sequence of keys while
preserving the channels and their respective guarantees.

158 Chapter 6. A Case Study: Secure Messaging

Resource Keyid,(I,R)

Parameters:
• Identity id, and interface names I (initiator) and R (responder)

• Predicates RU (can be read by U), LU (U’s copy can leak), and IU (can be
injected for U), for U ∈ {I,R}.

Events: Eset,U, E received,U, E leaked

Initialization
k � K
kR, kI ← uninit
injR, injI ← ⊥

Interface E

Input: (inject, inj, U) ∈ (2E → K)×
{I, R}

if kU 6= uninit then output ⊥
injU ← inj
output ok

Input: (read, U) ∈ {I, R}
if ¬LU(E) ∨ kU = erased ∨ injU 6= ⊥
then

output ⊥
E +← E leaked

output k

Interface U ∈ {I, R}
Input: read

if ¬RU(E) ∨ kU = erased then
output ⊥

if kU = uninit then
if IU(E) ∧ injU 6= ⊥ then

kU ← injU(E)
E +← Eset,U

else
kU ← k

E +← E received,U

output kU

Input: erase
kU ← erased
output ok

Figure 6.9: A formal description of the key resource. Note that the
adversary can not only learn the key, but (if allowed) also set it indi-
vidually for both parties. Note that for setting the key he is allowed to
submit a function inj that determines the key (upon when the party
first fetches it) based on the event history. That is, the party obtains
inj(E).

We model this sequence of keys as the parallel composition of many
individual key resources Keye,(A,B) shared between Alice and Bob, where
e denotes the epoch number. A formal definition of the key resource is
given in Figure 6.9 . On a high level, it essentially behaves like a pair of
memory resources that have the respective key stored. More concretely,
the key’s interfaces and their capabilities are as follows:

• Parties can read the key once it is available to them. The avail-

6.5. Asynchronous Ratcheting as CKA 159

ability is determined via the respective can-read predicates RI
and RR. Moreover, the parties can each request to securely erase
their respective copy of the key.

• The adversary E can potentially leak the key from either party, if
this is allowed by the respective can-leak predicate LU, and the
key has not been securely erased yet. Note that the leaked key
still looks random.

• Moreover, in certain circumstances the key is no longer random
(e.g., if the secret state used to produce it leaks). This corresponds
to the adversary being able to inject her own key. Specifically,
the adversary can inject, for each party, a function inj, that is
invoked when a party fetches their key and the can-inject predicate
evaluates to true. The function computes the injected key, given
the current event history.

The setting

Although CKA is a primitive that mandates an interlocked communi-
cation pattern, it is still intended to be used on top of asynchronous
communication between Alice and Bob. In particular, a party will attach
the latest synchronous update message T to each asynchronous message
it sends. This way, the CKA protocol proceeds as fast as possible: as
soon as at least one of the messages carrying a new, previously unseen
update arrives, a party can move to the next epoch. For this reason, the
real world involves the usual sequence of (insecure) channels between
Alice and Bob:

Channels :=
[{

Chi,A→B}
i∈[n],

{
Chj,B→A}

j∈[n]

]
.

In the real world, we have various memory resources: Each user U stores
his current epoch number e in the insecure memory IMemep,U, and he
stores his CKA state corresponding to epoch e in Memste,U. Moreover,
he stores the key Ie produced in epoch e in OMemkeye,U (where OMem
denotes an observable memory that behaves like Mem, except that it
triggers an E read event when the honest reader accesses the content for

160 Chapter 6. A Case Study: Secure Messaging

the first time8). Overall, we have

Mems :=
[{

Memste,U,OMemkeye,U,
}
e∈[2n],U∈{A,B},

{
IMemep,U}

U∈{A,B}

]
,

Furthermore, there are randomness resources Rande,U for the CKA.S
operation:

Rand :=
[{

Rande,A
}
odd e∈[2n],

{
Rande,B

}
even e∈[2n]

]
.

Finally, CKA requires setup in the form of a shared key, which is used
by Alice and Bob to derive their initial states via CKA.I-A and CKA.I-B,
respectively. Security of this operation is, however, outside the scope of
CKA (in particular, the shared key is never revealed to the adversary).
We model this by a real-world setup resource CKA-Setup(I,R), formally
defined in Figure 6.10 , that executes the initialization procedure and
provides the initial states γA

0 and γB
0 to the respective parties. That is,

analogous to our key-resource, the setup resource essentially corresponds
to a pair of memories [Memst0,A,Memst0,B], except that instead of the
parties writing to it, their states are “magically” initialized.

Putting it all together, we have the following assumed resources:

RCKA :=
[
CKA-Setup(A,B),Channels,Mems,Rand

]
, (6.11)

to which the converters implementing the CKA protocol will be attached.

The protocol

As we already hinted before, the protocol works by attaching to each
message sent on one of the channels the next CKA message T . That is,
we execute the protocol sketched on Figure 6.8 , except each message Te
is repeated with each asynchronous message.

Figure 6.11 formally describes the protocol executed by Alice. Her
state in epoch e is stored in Memste,A. For an even e, this is a ‘receiving’
state (recall that Alice can only receive messages in such epochs), that
contains simply the CKA state γ. For an odd e, this is a ‘sending’
state, containing the pair (γ, T), where T is the current update message,

8We will need this to specify our interval-wise guarantee to avoid the commitment
problem in case an ideal key has been output.

6.5. Asynchronous Ratcheting as CKA 161

Resource CKA-Setup(I,R)

Parameters: interfaces I (initiator) and R (responder), can-leak predicate L.

Events: E leaked
Mem(st0,I)

, E leaked
Mem(st0,R)

Initialization
k � K
γA ← CKA.I-A(k); γB ← CKA.I-B(k)

Interface E
Input: (read,U) ∈ {I,R}

if ¬L(E) then output ⊥
if γU 6= ⊥ then E +← E leaked

Mem(st0,U)

output γU

Interface U ∈ {I, R}
Input: read

output γU

Input: erase
γU ← ⊥
output ok

Figure 6.10: The resource encoding the setup and initialization of CKA.

attached to all Alice’s messages in this epoch. On each write input on
the outside interface of a channel, the protocol first decides whether
this message initiates a new epoch (if e is even) or not (if e is odd). If
the protocol stays in the same epoch, then it fetches the ’sending’ state
(γ, T) from Memste,A and simply attaches T to the message. Otherwise,
the protocol uses the ’receiving’ state fetched from the memory for the
previous (even) epoch to compute the update T . This latter operation
produces, as a byproduct, a new key I, which is stored in OMemkeye,A. A
read input is processed analogously. First, the message and the update
T are read from the real channel. If T has not been seen before, it is used
to initialize Memste,A, for the new epoch e, with a new receiving state.
On input read on the outside interface of a key, the key is retrieved
from Memkeye,A.

Bob’s protocol essentially works analogously—swapping odd and
even epochs. There are some minor differences with respect to initializa-
tion that reflect the fact that overall Alice acts as initiator and Bob as
responder, i.e., Bob cannot send a message before having received one.
We omit a formal specification of the respective converter cka-responder,
since the necessary modifications should be self explanatory.

162 Chapter 6. A Case Study: Secure Messaging

Converter cka-initiator

Emulating Int. A of Chi,A→B, i ∈ [n]
Input: (send,m, ad)

require only called once & isAvailable
call e← read at int. A of IMemep,A
if e = ⊥ ∨ e mod 2 = 0 then

if e = ⊥ then
call γ ← read

at interface A of
CKA-Setup(A,B)

call erase at int. A of
CKA-Setup(A,B)

e← 1
else

call γ ← read at int. A of
Memste,A
call erase at int. A of Memste,A
e← e+ 1

call r ← sample at int. A of Rande,A
(γ, T, I)← CKA.S(γ; r)
call (write, e) at int. A of IMemep,A
call (write, γ, T) at int. A of
Memste,A
call (write, I) at int. A of
OMemkeye,A

else
call (γ, T)← read at int. A of
Memste,A

call succ← (send,m, (ad, e, T))
at interface A of Chi,A→B

return succ

Input: isAvailable
call succ← isAvailable at int. A of
Chi,A→B

return succ

Emulating Int. A of Chj,B→A, j ∈ [n]
Input: receive

require only called once & isAvailable
call e← read at int. A of IMemep,A
call (m, (ad, e′, T ′))← receive

at interface A of Chj,B→A

if ¬(2 ≤ e′ ≤ e+ 1) ∨ e′ mod 2 = 1
then

return ⊥
else if e′ = e+ 1 then

call (γ, T)← read at int. A of
Memste,A
(γ, I)← CKA.R(γ, T ′)
e← e+ 1
call (write, e) at int. A of IMemep,A
call erase at int. A of Memste−1,A

call (write, γ) at int. A of Memste,A
call (write, I) at int. A of
OMemkeye,A

return (m, ad)

Input: isAvailable
call e← read at int. A of IMemep,A
call succ← isAvailable at int. A of
Chi,A→B

return e 6= ⊥ ∧ succ

Emulating Int. A of Keye,(A,B), e∈ [2n]
Input: read

call k ← read at int. A of OMemkeye,A
return k

Input: erase
call erase at int. A of OMemkeye,A
return ok

Figure 6.11: The protocol cka-initiator implementing CKA, executed
by the initiator, Alice. The protocol cka-responder executed by the
responder, Bob, is analogous.

6.5. Asynchronous Ratcheting as CKA 163

The construction

As mentioned before, the goal of the CKA protocol is to construct a
sequence of keys while preserving the channels and their respective guar-
antees. Thus, the ideal world consist of channels and the (potentially)
constructed key resources:

SCKA :=
[{

Keye,(A,B)}
e∈[2n],Channels

]
, (6.12)

where 2n is an upper bound of the number of epochs that can be
initiated when the parties send at most n messages each. If fewer epochs
occur, then we model this by simply not enabling the corresponding key
resources, i.e, the resources formally exist but are not available to the
parties.

Let us now describe the properties of the constructed key sequence,
as determined by the predicates can-read, can-leak, and can-set. Both
parties can read the key Keye,(A,B) as soon as they entered the e-th
epoch:

RSCKA
U,Key(e,(A,B))(E) := E in-epoch

e,U , (6.13)

where E in-epoch
e,U denotes the event that user U entered the e-th epoch.

Note that as long as Eve does not inject a forgery, this can easily be
determined from the event history that contains the sequence of all sent
and received messages and their respective order. Once Eve injects,
we can, for the sake of those predicates, assume that she will always
advance the session (cf. the simulator in the proof). Hence, the event
E in-epoch
e,U can easily be made formal.
The can-leak predicate of a key corresponds to the can-leak predicate

of the memory storing it, that is it leaks to the adversary if the memory
leaks:

LSCKA
U,Key(e,(A,B))(E) := LRCKA

U,Mem(keye,U)(Ẽ), (6.14)

which captures the situations where key directly leaks.
The stronger corruption, where Eve sets the key, is controlled by the

can-set predicate. This models situations, in which a key is no longer
random (and hence can be set by Eve). Roughly, keys are not random
in two situations: First, a key for epoch e is not random if either the
randomness to generate it leaked, or a user’s state leaks in any epoch
e′ ∈ {e− 1, . . . , e+ ∆− 1}. Note that this is just a safe approximation.

164 Chapter 6. A Case Study: Secure Messaging

For instance, while the scheme could heal for U between epoch e− 1 and
e (if e is a sending epoch for him) or not (otherwise), it is guaranteed
to heal between epoch e − 2 and e, and analogous for e + ∆. Since
the can-set predicate is only defined on past events, for now we only
say that it is true if a user’s state leaked in epochs e − 1 or e. The
other epochs e + 1, . . . , e + ∆ − 1 are considered when we deal with
the commitment problem. As a consequence, we define the following
composed event:

E state-leaked
U,e := E leaked

Mem(ste,U) ∨ E
leaked
Mem(ste−1,U) ∨ E

leaked
Rand(e,U).

Second, all keys for epochs following an active attack are not random
either (we give up on any guarantees in such case; originally, CKA does
not consider injections at all). Specifically, assume that the adversary
injects the i-th message. Clearly, she can influence the receiver’s key of
the corresponding epoch ei. In addition, we allow the adversary to set
the keys of all upcoming epochs e, and thus give up all guarantees for
epochs e with ei ≤ e, as expressed by the following event:

E injected-before
U→Ū,e := ∃i ∃ei ≤ e :

(
E in-epoch
ei−1,U ≺ E sent

Ch(i,U→Ū) ≺ E
in-epoch
ei+1,U

)
∧ E injected

Ch(i,U→Ū),

where the first condition just asserts that ei is indeed the i-th message’s
epoch.

Finally, for the epoch of the first injection, CKA does not guarantee
the randomness of neither the receiver’s nor the sender’s key (by injecting
the modified sender’s message, Eve can cause the keys to be correlated).

Overall, we define the following can-inject predicates, which are fully
symmetric for both parties:

ISCKA
U,Key(e,(A,B))(E) := Ekey-exposed

A,e ∨ Ekey-exposed
B,e , (6.15)

where
Ekey-exposed

U,e := E state-leaked
U,e ∨ E injected-before

Ū→U,e .

The commitment problem

The ideal world SCKA with the predicates described above is trivially
distinguishable from the real world. This is because, as already men-
tioned, leaking a state in epoch el ∈ {e+ 1, . . . , e+ ∆− 1} compromises

6.5. Asynchronous Ratcheting as CKA 165

the secrecy of the key from a past epoch e. However, in the adaptive
setting, the can-set predicate for this key cannot take into account the
future event of memory leakage.

As a consequence, we again turn towards interval-wise guarantees.
That is, analogous to the game-based definitions of CKA, we only make
a statement until the distinguisher decides to corrupt a memory that
cannot be simulated. More concretely, if the distinguisher decides to
“see” the ideal key in epoch e, then the memory cannot leak in epochs
e+ 1, . . . , e+ ∆− 1. Overall, we define the event that indicates a trivial
distinguishing attack as follows.

E inval-leak
e,U := E leaked

Mem(ste,U) ∧ ¬∃U
′, e′ :

(
e−∆ < e′ ≤ e

)
∧
(
Ecommitted

U′,e′ ≺ Ekey-exposed
U′,e′

)
,

where
Ecommitted

U,e := E leaked
OMem(keye,U) ∨ E

read
OMem(keye,U)

simply denotes the event that the key has either been output to the
user or leaked to the adversary.

Moreover, the commitment problem also occurs for active injections:
if the adversary chooses to change the value T to T ′ for the first
time, then this also compromises the sender’s key, which at this time
might already have been used. Analogous to the CKA security game
of [ACD19], we thus cannot simulate past injections if the sender is
committed on a uniform key for which the receiver did not yet receive
the message. Hence, we introduce the following indicator event:

E inval-inject
i,U := E received(false)

Ch(i,U→Ū)

∧ ∃e : ¬E in-epoch
e,Ū ∧ Ecommitted

U,e ≺ Ekey-exposed
U,e .

Note that this can only occur for the very first injection, as it immediately
triggers Ekey-exposed

U,ei for all future epochs.
In summary, we can thus simulate until the following event

Ecom-prob :=
∨

U∈{A,B}

(∨
e∈[2n]

E inval-leak
e,U ∨

∨
i∈[n]

E inval-inject
i,U

)
, (6.16)

occurs, indicating a trivial win for the distinguisher (after which we are
not interested in giving guarantees).

166 Chapter 6. A Case Study: Secure Messaging

Summary and analysis

With this workaround for the commitment problem in place, the CKA
scheme now achieves the described construction, as summarized in the
following theorem.

Theorem 6.5.1. If the CKA scheme CKA is (∆, ε)-secure for some
negligible ε, then if we map each event E received,U

Key(e,(A,B)) to E read
OMem(keye,U) and

each event E leaked,U
Key(e,(A,B)) to E leaked

OMem(keye,U), we have

RCKA
cka,[true,Ecom-prob]−−−−−−−−−−−−−→

interval-asym
SCKA,

for the protocol cka := (cka-initiator, cka-responder), the resources RCKA
and SCKA are as defined in Equations (6.11) and (6.12) with the predicates
as defined in Equations (6.13) to (6.15) , and the event Ecom-prob defined
in Equation (6.16) .

Proof. The simulator σCKA (cf. Appendix C.3.1 for a formal description)
has to emulate the state memories and randomness resources. Moreover,
it has to adjust the channel interfaces (where the CKA-values (e, T)
are not present in the ideal world) and map the key resources to the
corresponding memory resources in the real world. Observe that the
simulator sees all values (e, T) that get delivered to either party as the
adversary needs to specify them as part of the associated data. It stores
them in the transcript Tr, i.e, sets Tr[i, B]← (e, T) when the message on
the i-th channel to Bob contains those values. Given the event history,
the simulator moreover knows which messages have been delivered, and
thus can always compute the epoch a party is in.

Consider first the initial “secure” execution where the adversary
only forwards messages. The simulator samples all the randomness
and pre-computes the real-world states, keys and update messages for
all epochs upfront. With this and the knowledge of which epoch the
parties are in, he can trivially simulate the insecure memories storing the
epoch number, the randomness resources, the leakage of the channels
(containing (e, T)), and the state memories — at least as long as no
injection has happened.

Upon a key-memory corruption, he leaks the value stored in the
corresponding ideal-world key resource. It remains to show that the

6.5. Asynchronous Ratcheting as CKA 167

parties’ can-inject predicates permit that (1) the “ideal” key is indis-
tinguishable from the real key Ie if the key resource does not permit
programming, or (2) he can program it consistently. Moreover, we also
still need to argue that an active injection is handled properly. To this
end, we consider the three stages: while the parties are still in sync, the
first injection, and the phase where the parties are out of sync.

In sync. Consider the key for the e-th epoch. The CKA security
game ensures that this is indistinguishable from a uniform random
key unless a user’s state leaks in any epoch e′ ∈ {e − 1, . . . , e +
∆− 1}, or the randomness to generate it leaked. The can-inject
predicate of the key resource ensures that the simulator is allowed
to program the key if a user’s state of an epoch e′ ∈ {e − 1, e},
or the randomness, leaked. The interval-wise guarantee moreover
ensures that we only have to simulate leakage of the state of the
epochs e′ ∈ {e+ 1, . . . , e+ ∆− 1} if the key has been exposed in
any way.
Hence, it suffices that the simulator always just tried to program
the ideal-world keys to the precomputed ones (which are the
same as in the real-world). In particular, every time a message
for epoch e (as determined by the public associated data) is
delivered to Bob by the adversary (via either fwd or dlv), σCKA
updates the injB function of the e-th key. The function is defined
as injB(Tr, e, γA, γB, I, B, ·), where the last argument is the event
history, provided by the key resource at the time the key is fetched,
and the other arguments contain the whole state of the simulation.
Given this, the function computes the key Bob would fetch in the
real world.

First injection. Consider now a channel, where parties are still in sync,
and the adversary tries to deliver her own message, including her
own value T ′ for epoch e′. First observe that if in the ideal world,
the simulator is already committed on any ideal key, especially
the one for epoch e′, then the injection is not allowed.
In any case, the simulator just reruns the CKA protocol from e′ on.
This, among others, ensures that the leakage of the channels and
the state memories keeps being consistent even once the parties
are out of sync. Furthermore, using the newly obtained key, the

168 Chapter 6. A Case Study: Secure Messaging

simulator programs the receiver’ key as above. Note that he
already programmed the sender’ key consistently, which is after
the injection also the one the key resource will output by the
definition of the can-inject predicate.

Out of sync. Once the parties are out of sync, we give up on any
guarantee. Hence, for any delivery attempt (e′, T ′), the simulator
can rerun the protocol from epoch e′ on and consistently program
all the keys.

Chapter 7

Conclusion

This thesis is driven by one question: How can we overcome certain
obstacles that hinder the adoption of composable security definitions to
become the standard in cryptography? We ultimately believe that every
meaningful security statement can be phrased composably, i.e., such
that it is clear how one can build on it and such that it either holds
in any arbitrary environment, or at least makes the restrictions crystal
clear as part of the statement. The key to success in this endeavor is
finding the right type of composable statements, including the aspect of
finding the right mathematical type of object (i.e., abstraction boundary)
as well as finding the right types of statements to make about them.
The Constructive Cryptography framework is, thus, the perfect match
for this research. Its top-down abstraction and unique approach of
understanding security statements as a special instance of specification
abstraction, consolidated in an overarching definitional framework with
a supporting theory, clear guiding rules, and yet plenty of flexibility,
together provide an excellent foundation to explore novel answers to
those questions.

In Chapter 3 , we propose a novel type of mathematical object to
consider in Constructive Cryptography. Namely, we extend the mathe-
matical objects with the notion of global events to enhance the flexibility
and fine-granularity of the abstraction boundary that helps to enhance
modularity and phrase statements in a minimal manner. We demon-
strate its wide applicability in Chapters 5 and 6 . In Chapter 4 , we

170 Chapter 7. Conclusion

introduce the notion of context-restricted constructions, that allow to
explicitly formalize statements that do not hold in arbitrary contexts but
only within a well-specified set, while providing the expected remaining
composition guarantees. In particular, we show that such an approach
can provide explicit semantics to multi-stage game-based notions. In
Chapter 5 , we illustrate that composable statements about schemes for
which provably no UC-style simulation-based statement exist are not a
paradox, if one frees oneself from the overly restrictive understanding
of composable security being equivalent to the existence of a simulator.
In contrast, we show how such protocols’ achieved guarantees can be
naturally formalized using our novel type of interval-wise specifications.
Finally, in Chapter 6 we demonstrate the applicability of our generaliza-
tions to secure messaging; an area notoriously known for complicated
and overly specific game-base security definitions, especially resulting
in poor transferability of results among different works.

We hope that this thesis helps to spark new research interest in the
field of composable security. In light of this thesis, we encourage to
reconsider cryptographic schemes and protocols, which so far were only
known to satisfy standalone game-based security notions, and aim at
phrasing their guarantees as constructions of resource specifications. In
particular, multi-stage security games without clear executional seman-
tics might benefit from a composable clean slate approach. Finally, in
the realm of the simulator commitment problem, for instance the semi-
nal result in the context of MPC by Canetti, Feige, Goldreich, and Naor
[CFGN96], indicating that a protocol designed in the secure-channel
model cannot be generically instantiated using public-key cryptography
unless non-committing encryption is employed, deserves reconsideration.

Appendix A

Details of Chapter 4

A.1 Proof of Lemma 4.5.8

Lemma 4.5.8. Let k′ := min(k, log|H.Y|). If H is Cs-splt
p ∩ Cs−me

n,k′ RO-
CRI secure, then H is also Cr-splt

p,r ∩ Cs−me
n,k RO-CRI secure.

More concretely, let D denote the set of distinguishers. Then there
exists a translation of the distinguisher ρ : D ×

(
Cr-splt
p,r ∩ Cs−me

n,k

)
→ D

and a translation of the context ψ : Cr-splt
p,r ∩ Cs−me

n,k → Cs-splt
p ∩ Cs−me

n,k′ , such
that for every (f ,P) ∈ Cr-splt

p,r ∩ Cs−me
n,k we have

AdvRO-CRI
H,f ,P,σ (D) ≤

(
npr

2

)
2−(k′−1) + r ·AdvRO-CRI

H,f′ ,X′,σ(D′)

with D′ := ρ(D, f ,P) and (f ′ ,X′) := ψ(f ,P).

Proof. Let (f ,P) ∈ Cr-splt
p,r ∩ Cs−me

n,k . By definition, we then have f :=
g ◦ f r-splt

p,r for some filter g. This filter can also be thought of as an
reduction of the distinguisher (which follows from the composition-order
independence [MR11]), and thus we can rewrite

AdvRO-CRI
H,f ,P,σ (D) := ∆D(f [H,P], f [RO,P]σ)

= ∆D′′(f r-splt
p,r [H,P], f r-splt

p,r [RO,P]σ)

with D′′ = ρ1(D) := Dg.

172 Appendix A. Details of Chapter 4

Consider the beacon resource B that has the same interface as
the random oracle interface, but response with a fresh random value
for each query (i.e., it ignores the consistency condition for repeated
queries). Moreover, we introduce the following shorthand notation:
SH := f r-splt

p,r [H,P], SRO := f r-splt
p,r [RO,P]σ, and SB := f r-splt

p,r [B,P]σ, which
allows the advantage of the distinguisher D′′ to be expressed as

∆D′′(f [H,P], f [RO,P]σ) = ∆D′′(SH,SB) + ∆D′′(SB,SRO).

We now describe the reduction ρ2 that bounds the first term of
the sum with

(
npr
2
)
2−k′ + r · AdvRO-CRI

H,f′ ,X′,σ(D′) using a simple hybrid
argument.

Let {Xi}i∈[q] denote the sequence of hybrid resources that behave as
follows: at the interface E, the resource first outputs the index i and
subsequently behaves exactly as P. At the interface A, if i = 1 then
it behaves exactly as P, and if i > 1 then it outputs n independent
uniformly at random chosen values from the set H.Y. It is easy to see,
that if P ∈ Θs−me

n,k′ , then Xi ∈ Θs−me
n,k′ for all i. In addition, let X′ denote

the resource which chooses i ∈ [q] uniformly at random and then behaves
like Xi. Furthermore, let f′ := f s-splt

p and, hence (f ′ ,X′) ∈ Cs-splt
p ∩ Cs−me

n,k′ .
Analogously to above, let us define the following shorthand notation:
TH := f s-splt

p [R,X′], TH
i := f s-splt

p [R,Xi], and TR := f s-splt
p [R,X′]σ and

TR
i := f s-splt

p [R,Xi]σ for R ∈ {RO,B}.
Now, consider the reduction D′ := ρ2(D′′) = ρ2(ρ1(D)) where ρ2

is implemented using a special type of system C that translates one
setting into the other. Formally C is a converter that has an inside
and an outside interface, where the inside interface connects to all
the (merged) interfaces of the attached resource (here interface A and
E) and the outside interface becomes the interfaces of the composed
resource. Now consider the following reduction system C, which on the
inside expects to be connected either to the resource TH

i or TB
i . At the

outside interfaces, it simulates the according interfaces of f r-splt
p,r [H,P]

and f r-splt
p,r [B,P]σ. The system C first gets the index i and the hash

key hk at the inside interface. In every sequence of queries of the
form (query, f1), (repeat, f2), (repeat, f3), . . ., the queries 1 to i − 1
are simulated internally as queries to the beacon by sampling a value
uniformly at random and storing it in a buffer b. The i-th query in each
such sequence is then answered using the actual resource connected at

A.1. Proof of Lemma 4.5.8 173

the inside interface. For the remaining queries, the system C computes
the hash function H itself. A formal description of the reduction system
is provided in Figure A.1 .

Resource C

Initialization
b← ⊥p
j ← 0
call hk ← retrieve at int. E of H
call i← retrieve at int. E of X

Emulating Interface A of f r-splt
p,r

Input: get
b′ ← b
b← ⊥p
output b′

Input: (query, f1, . . . , fp)
j ← 1
if i = 1 then

call b← (retrieve, f1, . . . , fp) at int. A of f s-splt
p

else
b � H.Yp

Input: (repeat, f1, . . . , fp)
j ← j + 1
if b 6= ⊥p then

for ` = 1, . . . , p do
if j < i then

b[`] � H.Y
else if j = i then

call b[`]← (retrieve, (x, a) 7→ f`(x)) at int. A of f s-splt
p

else
b[`]← H(hk, fl(b[`]))

Emulating Interface E of i, i ∈ {H,X}
Input: retrieve

call y ← retrieve at int. E of i
output y

Figure A.1: The reduction system C.

174 Appendix A. Details of Chapter 4

The following system equivalences are easy to verify:

CTH
1 ≡ SH (A.1)

CWB
r ≡ SB (A.2)

CWB
i−1 ≡ CWH

i ∀i ∈ {2, . . . , q}. (A.3)

As a consequence, we can rewrite the second term as

∆D′′(SH,SB) = ∆D′′(CTH1 , CTBr)

= ∆D′′(CTH1 , CTB1) + ∆D′′(CTB1 , CTH2)

+ ∆D′′(CTH2 , CTB2) + ∆D(CTB2 , CTH3)
+ . . .

+ ∆D(CTHr , CTBr)

=
r∑
i=1

∆D′′(CTHi , CTBi)

= r ·∆D′′(CTH, CTB)

= r ·∆D′(TH,TB)

= r ·AdvRO-CRI
H,f′ ,R′,σ(D′) + r ·∆D′(TRO,TB)

where in the third step we used Equation (A.3) . In the forth step we
used that the distinguishing advantage of D′′ on the problem with R′ is
the average of the distinguising advantage of D on resources with the
the fixed i. Hence, the sum of these r terms is equal to r times the
average.

The overall claim is then directly implied by the following two
bounds, which remain to be shown:

∆D′(TRO,TB) ≤
(
np

2

)
2−k

′
(A.4)

∆D′′(SB , SRO) ≤
(
npr

2

)
2−k

′
(A.5)

In both cases the two resources behave exactly identically until a
repeated query to the oracle occurs. Hence, we can bound the distinction
advantage by the probability of managing non-adaptively to query twice

A.1. Proof of Lemma 4.5.8 175

the same input [Mau13]. In the following, we only prove A.5 , as A.4

follows by an analogous argument.
Let Z1, Z2, . . . , Znpr denote the queries, which are submitted to the

beacon. The collision probability can then be bounded using the union
bound

Pr(∃i 6= j Zi = Zj) ≤
∑
i6=j

Pr(Zi = Zj).

Observe that all queries are either of the form f(Ys, As), where (Ys, As)
is the s-th pair output by the entropy source, or f(Y), where Y is an
output of the beacon. If either Zi or Zj is of the latter type, then the
collision probability is trivially upper bounded by 1

|H.Y| ≤ 2−k′ , using
that f is injective. If both of them are of the former type, then that
by definition of the filter f r-splt

p,r the two inputs Zi, Zj cannot collide if
they depend on the same underlying value Xs from the entropy source.
Hence, assume w.l.o.g. that Yi = f(Ys, As) and Yj = f(Yt, At) with
s > t. For every pair of fixed auxiliary information (as, at), we obtain
the following bound:

Pr(fi(Ys, as) = fj(Yt, at))

=
∑
z

Pr(fi(Ys, as) = z ∧ fj(Yt, at) = z)

=
∑
z

Pr(Yt = f−1
j (z, at)) · Pr(Ys = f−1

i (z, as) | Yt = f−1
j (z, at))

≤
∑
z

Pr(Yt = f−1
j (z, at)) ·max

ts
Pr(Ys = ts | Yt = f−1

j (z, at))

=
∑
yt

Pr(Yt = yt) ·max
ys

Pr(Ys = ys | Yt = yt)

= 2−H̃∞(Ys|Yt) = 2−k ≤ 2−k
′
.

Averaging over the choice of (as, at) yields the desired result

Pr(fi(Ys, As) = fj(Yt, At)) ≤ 2−k
′
,

and, thus, the distinction advantage ∆D(SB , SRO) can be bounded as

Pr(∃i 6= j Zi = Zj) ≤
∑
i 6=j

Pr(Zi = Zj) ≤
(
npr

2

)
2−k

′
.

Appendix B

Details of Chapter 5

B.1 Details of Section 5.3

B.1.1 Proof of Theorem 5.3.12

Theorem 5.3.12. For any resource R and any monotone predicates P1
and P2, we have

R[P1,P2] =
⋃
n∈N

(⋃{
Rφ1·φ2···φn | ∀i ≤ n : φi ∈ {P2], [P1}

})
=
((

R[P1
)P2]

)[P1
=
((

RP2])[P1
)P2]

,

where Rφ1·φ2···φn is a shorthand notation for first applying φ1, then φ2,
until φn.

Proof. We prove the theorem in three steps:

Claim 1. R[P1,P2] =
((
R[P1

)P2]
)[P1

Proof of claim. Let S ∈
((
R[P1

)P2]
)[P1

be arbitrary. This means that

178 Appendix B. Details of Chapter 5

there exist T ∈
(
R[P1

)P2], U ∈ R[P1 and R ∈ R such that

fromP1(S) = fromP1(T), (B.1)
untilP2(T) = untilP2(U), (B.2)
fromP1(U) = fromP1(R). (B.3)

Combining these properties with the commutativity of from and until,
we obtain

untilP2(fromP1(R)) = untilP2(fromP1(U)) = fromP1(untilP2(U))
= fromP1(untilP2(T)) = untilP2(fromP1(T))
= untilP2(fromP1(S)),

implying that S ∈ R[P1,P2] and thus R[P1,P2] ⊇
((
R[P1

)P2]
)[P1

.
Now, let S ∈ R[P1,P2] be arbitrary. By definition, we thus know that

there exists a R ∈ R such that fromP1(S) ∈
(
fromP1(R)

)P2]. Combining
this with the basic fact that fromP1(R) ∈ R[P1 , we obtain fromP1(S) ∈(
R[P1

)P2]. Combining this in turn with the basic fact that S ∈ S[P1 then

yields S ∈
((

R[P1
)P2]

)[P1
and thus R[P1,P2] ⊆

((
R[P1

)P2]
)[P1

. ♦

Claim 2. R[P1,P2] =
((
RP2])[P1

)P2]

Proof of claim. Observing that

R[P1,P2] =
{

S
∣∣ untilP2(fromP1(R)) = untilP2(fromP1(S))

}
(using the commutativity), it is easy to see that the proof follows
analogously. ♦

Claim 3. R[P1,P2] =
⋃
n∈N

(⋃{
Rφ1·φ2···φn | ∀i ≤ n : φi ∈ {P2], [P1}

})
Proof of claim. Using the previous claims, it is trivial to see that

R[P1,P2] ⊆
⋃
n∈N

(⋃{
Rφ1·φ2···φn | ∀i ≤ n : φi ∈ {P2], [P1}

})
.

B.1. Details of Section 5.3 179

For the other direction, we proceed by induction over n. Note that
without loss of generality (by Theorems 5.3.3 and 5.3.8), we can assume
the order of the relaxations to strictly alternate. Furthermore, the
previous claims already prove it for n = 3. Hence, the relation is also
trivial for n < 3, as adding a further relaxation only enlarges the set.
Assume now as the induction hypothesis that for some n ≥ 3

R[P1,P2] ⊇
⋃{
Rφ1·φ2···φn | ∀i ≤ n : φi ∈ {P2], [P1}

}
.

We want to show that Rφ1·φ2···φn+1 ∈ R[P1,P2] as well. Assume w.l.o.g.
that φn+1 = P2]. By the induction hypothesis, we have that Rφ1·φ2···φn ∈

R[P1,P2] and thus by the second claim Rφ1·φ2···φn ∈
((

RP2])[P1
)P2]

and
thus

Rφ1·φ2···φn ∈
(((

RP2])[P1
)P2])P2]

=
(((

RP2])[P1
)P2])P2]

,

where the second step follows from Theorem 5.3.3 . ♦

B.1.2 Proof of Theorem 5.3.16

Theorem 5.3.16. Let P1 and P2 be two monotone predicates, and let
ε be a function mapping distinguishers to values in [0, 1]. Then, for any
specification R we have(

R[P1,P2]:ε)[P ′1,P ′2]:ε′ ⊆ R
[P1∧P ′1,P2∨P ′2]:ε[P1∧P ′1,P2∨P ′2]+ε

′
[P1∧P ′1,P2∨P ′2] ,

where ε[P1∧P ′1,P2∨P ′2](D) := ε(D ◦ untilP2∨P ′2 ◦ fromP1∧P ′1), i.e., the per-
formance of the distinguisher interacting with the projected resource,
and analogously for ε′[P1∧P ′1,P2∨P ′2].

Proof. Observe that it suffices to show(((
R[P1∧P ′1,P2∨P ′2])ε)[P1∧P ′1,P2∨P ′2])ε′

⊆
((
R[P1∧P ′1,P2∨P ′2])ε[P1,P2]+ε′[P1,P2]

)[P1∧P ′1,P2∨P ′2]
.

The rest then follows trivially by Theorems 2.2.10 and 5.3.13 . To this

end, consider an arbitrary S ∈
(((
R[P1∧P ′1,P2∨P ′2])ε)[P1∧P ′1,P2∨P ′2])ε′

.

180 Appendix B. Details of Chapter 5

Hence, there must exist a T ∈
((
R[P1∧P ′1,P2∨P ′2])ε)[P1∧P ′1,P2∨P ′2], a U ∈(

R[P1∧P ′1,P2∨P ′2])ε, and a V ∈ R[P1∧P ′1,P2∨P ′2] such that∣∣∆D(S,T)
∣∣ ≤ ε′(D) (B.4)

untilP2∨P ′2(fromP1∧P ′1(T)) = untilP2∨P ′2(fromP1∧P ′1(U)) (B.5)∣∣∆D(U,V)
∣∣ ≤ ε(D). (B.6)

Using those properties, we obtain∣∣∆D(untilP2∨P ′2(fromP1∧P ′1(V)),untilP2∨P ′2(fromP1∧P ′1(S))
)∣∣

≤
∣∣∆D(untilP2∨P ′2(fromP1∧P ′1(V)),untilP2∨P ′2(fromP1∧P ′1(U)))

∣∣
+
∣∣∆D(untilP2∨P ′2(fromP1∧P ′1(T)),untilP2∨P ′2(fromP1∧P ′1(S)))

∣∣
≤
∣∣∣∆D◦untilP2∨P ′2

(·)◦fromP1∧P ′1
(·)(V,U)

∣∣∣
+
∣∣∣∆D◦untilP2∨P ′2

(·)◦fromP1∧P ′1
(·)(T,S)

∣∣∣
≤ ε[P1∧P ′1,P2∨P ′2](D) + ε′[P1∧P ′1,P2∨P ′2](D).

Now observe that V ∈ R[P1∧P ′1,P2∨P ′2] implies

untilP2∨P ′2(fromP1∧P ′1(V)) ∈ R[P1∧P ′1,P2∨P ′2],

and thus,

untilP2∨P ′2(fromP1∧P ′1(S)) ∈
(
R[P1∧P ′1,P2∨P ′2])ε[P1∧P ′1,P2∨P ′2]+ε

′
[P1∧P ′1,P2∨P ′2] .

As a result, we have

S ∈
((
R[P1∧P ′1,P2∨P ′2])ε[P1∧P ′1,P2∨P ′2]+ε

′
[P1∧P ′1,P2∨P ′2]

)[P1∧P ′1,P2∨P ′2]
,

concluding the proof.

B.1.3 Proof of Proposition 5.3.20

Proposition 5.3.20. Let πENC = (πenc, πdec) denote the protocol secur-
ing communication using a symmetric encryption scheme. Then, for

B.2. Details of Section 5.4 181

the resources in Figure 5.1 , there exist (efficient) simulators σ1, σ2,
and σ3 such that∧

(σ,ε,P1,P2)∈Ω

([
EncKey,AuthChDg

] πENC,σ,ε,[P1,P2]−−−−−−−−−−−→
interval

SecChDg
)

for

Ω :=
{(
σ1, εCPA, true, E leaked

EncKey ∨ E leaked
AuthKey

)
,
(
σ2, 0, E leaked

EncKey, false
)
,(

σ3, 0, E leaked
AuthKey, false

)}
,

where εCPA denotes a simple reduction from distinguishing the secure
and authenticated channel (without key leakage) to the IND-CPA game.

Proof (Sketch). Let σ1 be the usual simulator that creates fake cipher-
texts by encrypting 0|m| instead of m, when queried for the leakage
of the channel. By definition, we have untilE leaked

EncKey∨E
leaked
AuthKey

(σ1SecChDg) ∈

(σ1SecChDg)[true,E leaked
EncKey∨E

leaked
AuthKey]. Thus, if the encryption scheme is IND-

CPA secure, then it is easy to see that

untilE leaked
EncKey∨E

leaked
AuthKey

(πENC
[
EncKey,AuthChDg

]
)

∈
(
(σ1SecChDg)[E leaked

EncKey∨E
leaked
AuthKey

)εCPA ,

which proves the construction inside the first interval. For the second
interval, consider the simulator σ2 that encrypts the real messages.
Using correctness of the encryption scheme, it is easy to see that

fromE leaked
EncKey

(πENC
[
EncKey,AuthChDg

]
) = fromE leaked

EncKey
(σ2SecChDg),

and analogous for the third interval using the same simulator σ3 =
σ2.

B.2 Details of Section 5.4

B.2.1 ElGamal Commitments
In this section, we provide some additional details to the ElGamal-
commitment example. First, a formal definition of the corresponding

182 Appendix B. Details of Chapter 5

converter implementing the protocol is presented in Figure B.1 . Second,
a formal definition of the two simulators involved in the construction
statements of is depicted in Figure B.2 . The left simulator σA

ElG-com is
used to formalize security against a potentially dishonest Alice (initiator),
and the right σB

ElG-com is used to formalize security against a potentially
dishonest Bob (responder), respectively.

B.2.2 Coin-Tossing
In this section, we provide some additional details on the coin-tossing
example. First, in Figure B.3 we prove the formal definition of the
two converters of Blum’s protocol for constructing a single-bit coin-toss
resource. Note that in the protocol Alice acts as the initiator, and Bob
as the responder, respectively. The pseudo-code description is presented
in Figure B.3 .

Second, a formal description of the two simulators involved in the
construction statements of the coin-toss resource is depicted in Fig-
ure B.4 . The left σA

CT is used to formalize security against a potentially
dishonest Alice (initiator), and the right σB

CT is used to formalize security
against a potentially dishonest Bob (responder), respectively.

B.2. Details of Section 5.4 183

Converter πA
ElG-com

Initialization
a, b, v ← ⊥

Emulating Interface A of ComA→B
G

Input: (commit,m)
require only called once
a, b � Z|G|
v ← m
call (send, (ga, gb,m · gab))

at interface A of ChA→B
1

E +← Ecommitted

return ok

Input: (open,m)
require Ecommitted

and only called once
if m = v then

call (send, (a, b))
at interface A of ChA→B

2

E +← Eopened

return ok

Converter πB
ElG-com

Initialization
c, A,B, v ← ⊥

Emulating Interface B of ComA→B
G

Input: isCommitted
if c = ⊥ then

call (c, A,B)← receive
at interface B of ChA→B

1
return c 6= ⊥

Input: read
if c = ⊥ then

call (c, A,B)← receive
at interface B of ChA→B

1
if v = ⊥ then

call (a, b)← receive
at interface B of ChA→B

2
if (a, b) 6= ⊥∧A = ga ∧B = gb

then
v ← c · g−ab

return v

Figure B.1: A description of the ElGamal-commitment converters.

Converter σB
ElG-com

Initialization
u, v, w � G
x← ⊥

Emulating Interface B of ChA→B
1

Input: receive
call succ← isCommitted

at interface B of ComA→B
G

if succ then
return (u, v, w)

else
return ⊥

Emulating Interface B of ChA→B
2

Input: receive
return ⊥

Converter σA
ElG-com

Initialization
A,B, V ← ⊥

Emulating Interface A of ChA→B
1

Input: (send, x)
require only called once
if x ∈ G3 then (A,B, V)← x
call (commitRaw, x)

at interface A of ComA→B
G

return ok

Emulating Interface A of ChA→B
2

Input: (send, x)
require only called once
if x=(a, b) ∈ Z|G| ∧ A=ga ∧ B=gb
then

call (open, V · g−ab)
at interface A of ComA→B

G
return ok

Figure B.2: The simulators from the ElGamal-commitment construction.

184 Appendix B. Details of Chapter 5

Converter πA
CT

Initialization
X,Y ← ⊥

Emulating Interface A of CTA,B
{0,1}

Input: initiate
require only called once
X � {0, 1}
call commit at int. A of ComA→B

return ok

Input: read
require X 6= ⊥
if Y = ⊥ then

call Y ← read at int. A of ChB→A

if Y 6= ⊥ then return X ⊕ Y
else return ⊥

Input: release
require Y 6= ⊥ and only called once
call (open, X) at int. A of ComA→B

return ok

Converter πB
CT

Initialization
X,Y ← ⊥

Emulating Interface B of CTA,B
{0,1}

Input: isInitiated
call b← isCommitted

at interface B of ComA→B

return b

Input: respond
require isInitiated

and only called once
Y � {0, 1}
call (send, Y) at int. B of ChB→A

return ok

Input: read
require Y 6= ⊥
if X = ⊥ then

call X ← read
at interface B of ComA→B

if X 6= ⊥ then
return X ⊕ Y

else
return ⊥

Figure B.3: A formal description of the coin-tossing converters.

B.2. Details of Section 5.4 185

Simulator σA
CT

Emulating Int. A of ComA→B
{0,1},f

Input: (commit, x) ∈ {0, 1}
require ¬Ecommitted

X ← x
call init at int. A of CTA,B

return ok

Input: (commitRaw, c) ∈ {0, 1}∗

require ¬Ecommitted

call init at int. A of CTA,B

call X ← (getLeakage, c)
at interface B of CTA,B

{0,1},f
return ok

Input: (open, x) ∈ {0, 1}
require Ecommitted, only called once,

and x = X

call release at int. A of CTA,B

return ok

Emulating Interface A of ChB→A

Input: read
require X 6= ⊥ ∨ C 6= ⊥
call Z ← read at int. B of CTA,B

{0,1},f
if Z 6= ⊥ then return Z ⊕X
else return ⊥

Simulator σB
CT

Initialization
Z, Y ← ⊥

Emulating Interface B of ComA→B
{0,1}

Input: isCommitted
call b← isInitiated

at interface B of CTA,B

return b

Input: read
require Y 6= ⊥
if Z = ⊥ then

call Z ← read at int. B of CTA,B

if Z 6= ⊥ then
return Z ⊕ Y

else
return ⊥

Emulating Interface B of ChB→A

Input: (send, Y) ∈ {0, 1}
require isInitiated

and only called once
call respond at int. B of CTA,B

{0,1}
return ok

Figure B.4: A description of the respective coin-tossing simulators.

Appendix C

Details of Chapter 6

C.1 Details of Section 6.3.1

C.1.1 Key-Updating Signatures
Syntax. A key-updating signature scheme KuSig consists of three
polynomial-time algorithms (KuSig.Gen,KuSig.Sign,KuSig.Verify). The
probabilistic algorithm KuSig.Gen generates an initial signing key sk
and a corresponding verification key vk. Given a message m and sk,
the signing algorithm outputs an updated signing key and a signa-
ture: (sk′, σ)← KuSig.Sign(sk,m). Similarly, the verification algorithm
outputs an updated verification key and the result v of verification:
(vk′, v)← KuSig.Verify(vk,m, σ).

Correctness. Let (sk0, vk0) be any output of KuSig.Gen, and let
m1, . . . ,mk be any sequence of messages. Further, let (ski, σi) ←
KuSig.Sign(ski−1,mi) and (vki, vi) ← KuSig.Verify(vki−1,mi, σi) for
i = 1 . . . (k − 1). For correctness, we require that vi = 1 for all
i = 1 . . . (k − 1).

Security. The security of KuSig is formalized using the game KuSig-
UF, described in Figure C.1 . For simplicity, we define the security in the
single-user setting (security in the multi-user setting can be obtained
using the standard hybrid argument).

188 Appendix C. Details of Chapter 6

Game: KuSig-UF

Initialization
(sk, vk)← KuSig.Gen
s, r ← 0
B ← array initialized to ⊥
win← false
lost← false
Exposed← ∅
return vk

Oracle Sign
Input: (m, leak) ∈ M× {true, false}
s← s+ 1
z � R
(sk, σ)← KuSig.Sign(sk,m; z)
B[s]← (m,σ)
if leak then

Exposed← Exposed ∪ {s− 1, s}
return (σ, z)

else
return σ

Oracle Expose

Exposed← Exposed ∪ {s}
return sk

Oracle Verify
Input: (m,σ) ∈ M× Σ

(vk, v)← KuSig.Verify(vk,m, σ)
if v = 0 then

return (0, vk)
r ← r + 1
if B[r] 6= (m,σ) then

if r − 1 ∈ Exposed then
lost← ¬win

else
win← true

return (1, vk)

Finalization

return win ∧ ¬lost

Figure C.1: The strong unforgeability game for key-updating signatures.

C.1.2 The Authentication Protocol
Recall that in protocol, whenever the sender wants to send a message, a
fresh signing and verification key pair is sampled. The fresh verification
key is then signed together with the message—using the prior signing
key— and the message, the verification key and the signature are
transmitted. Finally, the old signing key is securely erased and the
fresh one stored instead. Moreover, with each message, the sender also
transmits a hash of the previous verification key. The receiver, on the
other hand verifies a received message with the previous verification key
and stores the new one. See Figure C.2 for a formal definition of the
two converters.

C.1.3 Proof of Theorem 6.3.1

Proof. See Figure C.3 for a description of the simulator. Note that the
simulator is parameterized in the real world’s security guarantees, e.g.,

C.1. Details of Section 6.3.1 189

Converter sigi

Emulating Interface A of Chi−1,A→B

Input: (send,m, ad) ∈ M×AD
require only once & isAvailable

// Generate fresh keys
call r ← sample at int. A of Randkgi,A
(sk, vk)← Sig.Gen(r)

// Send the verif. key along the msg
call (write,m, (ad, vk))

at interface A of Chi−1,A→B

// Store the keys
call (write, (sk, vk))

at interface A of Memski,A
return ok

Input: isAvailable
call succ← isAvailable

at interface A of Chi−1,A→B

return succ

Emulating Interface A of Chi,A→B

Input: (send,m, ad) ∈ M×AD
require only once & isAvailable

// Fetch the signing key
call (sk, vk)← read

at interface A of Memsk,A

// Sign and send the message
σ ← Sig.Sign(sk, (m, ad))
h← hash(ad, vk)
call (write, (m,h, σ), ad)

at interface A of Chi,A→B

// Erase the signing key
call erase at int. A of Memski,A
return ok

Input: isAvailable
call succ← isAvailable

at interface A of Chi,A→B

call (sk, vk)← read
at interface A of Memski,A

return succ ∧ ((sk, vk) 6= ⊥)

Converter vrfi

Emulating Interface B of Chi−1,A→B

Input: receive
require only called once

// Receive the message with the vk
call (m, (ad, vk))← read

at interface B of Chi−1,A→B

if (m, (ad, vk)) = ⊥ then return ⊥

// Store the verification key
call write, vk at int. B of Memvki,B
return (m, ad)

Input: isAvailable
call succ← isAvailable

at interface B of Chi−1,A→B

return succ

Emulating Interface B of Chi,A→B

Input: receive
require only once & isAvailable

// Receive the message
call ((m,h, σ), ad)← read

at interface B of Chi,A→B

if ((m,h, σ), ad) = ⊥ then return ⊥

// Verify the signature and hash
call vk ← read at int. B of Memvki,B
v ← Sig.Verify(vk, (m, ad), σ)
h′ ← hash(vk, ad)
if ¬v ∨ h 6= h′ then return ⊥
return (m, ad)

Input: isAvailable
call succ← isAvailable

at interface B of Chi,A→B

call vk ← read at int. A of Memvki,B
return succ ∧ (vk 6= ⊥)

Figure C.2: A description of the converters sigi and vrfi implementing
the unidirectional authentication scheme for a single message.

190 Appendix C. Details of Chapter 6

the can-leak predicate of the memory resources. We now proceed to ar-
gue that this simulator actually makes the two worlds indistinguishable.

The simulator internally samples a signing-verification key pair and
remembers the randomness. Using this, it is easy see to that Alice’s
memory and randomness resources can be perfectly simulated, since the
simulator knows when Alice sent her messages from the corresponding
events and the real-world can-leak predicates. Moreover, Bob’s memory
storing the verification key he receives is also simple to emulate, since
the key is transmitted as part of the associated data the simulator sees.

Next, consider the (i− 1)-st channel. The can-send predicate of the
ideal world enforces that the sent event is triggered if and only if it is
triggered in the real world. The leakage at Eve’s interface is then also
simple to simulate: the simulator just appends the verification key to
the associated data. Handling injections is also straight-forward: in the
real-world, if the distinguisher asks for (m′, (ad′, vk′)) to be injected,
then at the point of time Bob fetches this will differ from (m, (ad, vk)) if
and only one of the components differ and the corresponding injection-
function will be evaluated. In the ideal world, the simulator removes vk′
and asks to inject (m′, ad′), setting the same flag to false if vk′ 6= vk,
leading to the same behavior. If the distinguisher request a specific
error to be triggered, the simulator can simply forward this as well,
thereby excluding the signature-verification error.

The interesting part to simulate is everything with respect to the
i-th channel. First, observe that Alice will only send the message after
sending the (i− 1)-st, which the can-send predicate in the ideal world
ensures as well. Simulating the leakage is also straightforward: the
simulator just adds the hash and the signature himself. Now consider
a delivery attempt. First, the simulator only processes it once there
has also been a delivery on the former channel, such that it knows the
verification key Bob will use. Since Bob will not fetch the latter message
out-of-order, as enforced by the protocol and the can-receive predicates,
respectively, this is not observable, however. Recall that

D
Sauth
i

Ch(i,A→B)(E , same) :=

err if DRauth

i

Ch(i,A→B)(Ẽ , same) = err
∧err 6= msg

sig-err else if ¬(same ∨ E sk-known
i)

msg else

C.1. Details of Section 6.3.1 191

Thus, to show that the two worlds behave identically, we need (1) show
that the same flag is consistent, as otherwise the channels might trigger
different error before it even gets to the signature verification, (2) show
that the two worlds trigger a signature-verification error for the same
inputs. We consider two cases:

An explicit delivery ((m′, h′, σ′) 6= fwd):

1. In order for the ideal-world to behave equivalent, the simulator
needs to ensure that the same flag in both worlds agree. In the
real-world, however, this flag takes the signature and the hash
into account, which in the ideal-world are not part of the message
but only simulated. The simulator, thus, needs to detect any
modification of the signature and the hash itself, and if necessary
enforce same = false. Note that the simulator might never see
Alice’s message, since the channel might be confidential, and thus
cannot trivially check this. It thus proceeds as follows: it verifies
the signature using the original verification key (not necessarily
the one used by Bob). By correctness of the signature scheme, a
failure clearly indicates that something must have been tampered
with. By uniqueness of the signatures, it moreover follows that
if (m′, ad′) = (m, ad) and the verification succeeds, then it must
have been the same signature. Hence, the simulator can enforce
same = false whenever the verification fails, resulting in the
channel using same = false iff (m,σ, ad) 6= (m′, σ′, ad′). For
the hash value, the simulator can recompute hash(ad′, vk), and
set same = false whenever it does not match. If ad = ad′, this
check ensures that h′ = h, and otherwise the channel will set
same = false anyways. Thus, we know that in the real-world
an error happens before the signature verification iff the same
happens in the idea-world.

2. Now consider the signature verification and the hash check. For
the former, the simulator simply verifies the signature using vk′
(which Bob uses in the real-world). If the check succeeds, it
injects the message. Otherwise, it triggers a signature-failure
event. It remains to see that whenever the simulator tries to
inject the message this is actually allowed by D

Sauth
i

Ch(i,A→B)(E , same).
It is, however, easy to see that this happening would directly

192 Appendix C. Details of Chapter 6

imply an existential forgery, since it means that Eve injected
a different message with a valid signature, with respect to the
correct verification key, and without having any information about
the signing key (neither the key nor its randomness leaked). The
simulator can furthermore easily check that h′ = hash(ad′, vk′),
this time using vk′, which also Bob would use in the real-world.

A forwarding request: Whenever the distinguisher asks to deliver
the original message, but with a potentially different associated
data, the same flag is trivially to decide: its the same iff the
associated data match. Since this is what the channel checks
anyways, there is nothing for the simulator to be taken care of.
Now consider the check performed by Bob’s protocol. In the real
world, by collision resistance, the hashes will match iff ad = ad′ and
vk = vk′. In this case, by correctness, the signature verification
will also succeed. Hence, the protocol accepts iff ad = ad′ and
vk = vk′, which can easily be emulated.

If the distinguisher asks to trigger an error, this can be handled analogous
to the delivery request. More precisely, the simulator decides same
analogously and then requests an the error to be triggered, thereby
excluding the signature error.

Simulator σauth

Let `sig and `hash the length of a signature and a hash, respectively.

Initialization
r � R
(sk, vk)← Sig.Gen(r)
vk′ ← ⊥

Emulating Interface E of Memski,A

Input: read
if Esent

Ch(i−1,A→B) ∧ ¬E
sent
Ch(i,A→B) ∧

L
Rauth
i

Mem(ski,A)(Ẽ) then

E +← E leaked
Mem(ski,A)

return (sk, vk)
else

return ⊥

Emulating Interface E of IMemvki,B

Input: read
if E received

Ch(i−1,A→B) then return vk′

else return ⊥

Emulating Interface E of Randkgi,A

Input: triggerLeaking

if ¬LRauth
Rand(kgi,A)(Ẽ) then return ⊥

E +← E leaked
Rand(kgi,A)

return ok

Input: getLeakage
if ¬Esent

Ch(i,A→B) ∨ ¬E
leaked
Rand(kgi,A) then

return ⊥
return r

C.1. Details of Section 6.3.1 193

Emulating Interface E of Chi−1,A→B

Input: read
call (m, ad)← read

at interface E of Chi−1,A→B

if (m, ad) = ⊥ then return ⊥
else return (m, (ad, vk))

Input: readLength
call (`, ad)← readLength

at interface E of Chi−1,A→B

if (`, ad) = ⊥ then return ⊥
else return (`, (ad, vk))

Input: (deliver,m′, (ad′, vk′′), same)
vk′ ← vk′′

if same = check ∧ vk′′ 6= vk then
same ← false

call (deliver,m′, ad′, same)
at interface E of Chi−1,A→B

return ok

Input: (error, err,m′, (ad′, vk′′),
Overw, same)

if same = check ∧ vk′′ 6= vk then
same ← false

O′ ← Overw ∪ {sig-err}
call (error, err, O′,m′, ad′, same)

at interface E of Chi−1,A→B

return ok

Emulating Interface E of Chi,A→B

Input: (error, err,Overw, (m′, h′, σ′),
ad′, same)

if same = check then
handle as in deliver by computing
vS and hS

Overw ← Overw ∪ {sig-err}
call (error, err,Overw,m′, ad′, same)

at interface E of Chi,A→B

return ok

Input: read
call (m, ad)← (read,m, ad)

at interface E of Chi−1,A→B

if (m, ad) = ⊥ then return ⊥
σ ← Sig.Sign(sk, (m, ad))
return ((m,h(vk, ad), σ), ad)

Emulating Int. E of Chi,A→B (cont.)
Input: readLength

call (`, ad)← readLength
at interface E of Chi−1,A→B

if (`, ad) = ⊥ then return ⊥
return (`+ `sig + `hash, ad)

Input: (deliver, (m′, h′, σ′), ad′, same)
if (m′, h′, σ′),= fwd∧¬Esent

Chi,A→B then
return ⊥

At this point, if delivery of (i − 1)-st
channel not called, then output ok im-
mediately but delay processing until
then.

if (m′, h′, σ′) = fwd then
call (`, ad)← readLength

at interface E of Chi,A→B

if ad′ = ad ∧ vk′ = vk then
call (deliver, fwd, ad′, same)

at interface E of Chi,A→B

else
if same = check then

same ← ad′ = ad
call (error, sig-err, ∅,⊥,⊥, same)

at interface E of Chi,A→B

else
vS ← Sig.Verify(vk, (m′, ad′), σ)
vR ← Sig.Verify(vk′, (m′, ad′), σ′)
hS ← hash(ad, vk)
hR ← hash(ad′, vk)
if same = check then

if ¬vS ∨ hS 6= h′ then
same ← false

if vR ∧ hR = h′ then
call (deliver,m′, ad′, same)

at interface E of Chi,A→B

else
call (error, sig-err, ∅,m′, ad′,

same)
at interface E of Chi,A→B

return ok

Figure C.3: The simulator for Theorem 6.3.1 .

194 Appendix C. Details of Chapter 6

C.2 Details of Section 6.3.2

C.2.1 The Sesqui-directional HIBE Protocol
Recall that the protocol proceeds in epochs, where each epoch is initiated
by Bob sending a fresh HIBE public key mpk (and indicating how many
messages he received at this moment). Within the epoch, Alice sends
then a sequence of messages to Bob, encrypted under this public key
and using as identity (the hashes of) all ciphertexts she sent since the
message indicated by Bob. See Figure C.4 for a schematic depiction of
the scheme.

Alice Bob

(mpk,sk)←HIBE.Setupmpk, 0

mpk sk()
c1←HIBE.Enc(mpk,(),m1) c1, 1

(c1),mpk
m1←HIBE.Dec(sk(),c1)

sk(c1)←HIBE.Kgen(sk(),c1)

sk(c1)

(m̃pk,s̃k)←HIBE.Setup
m̃pk, 1

sk(c1), s̃k()

(c2), m̃pk

c2←HIBE.Enc(mpk,(c1),m2) c2 , 1

m2←HIBE.Dec(sk(c1),c2)

sk(c1,c2)←HIBE.Kgen(sk(c1),c2)

s̃k(c2)←HIBE.Kgen(s̃k(),c2)

sk(c1,c2), s̃k(c2)

(c1, c2),mpk

c3←HIBE.Enc(m̃pk,(c2),m3)
c3 , 2

m3←HIBE.Dec(s̃k(c2),c3)

s̃k(c2,c3)←HIBE.Kgen(s̃k(c2),c3)

s̃k(c2,c3)

(c2, c3), m̃pk

Figure C.4: Sesqui-directional confidentiality from HIBE, depicting the
first and the beginning of the second epoch.

See Figures C.5 and C.6 for a formal definition of the two converters
hibe-enc and hibe-dec, respectively, that implement this protocol when
connected to the real-world resource Rhibe. Note that in the formal defi-
nition we allow ourselves to be a bit sloppy when it comes to determine

C.2. Details of Section 6.3.2 195

in which epoch a party is, or how many messages a party already sent
or received. While this in principle can be decuded from the memory
resources the parties have available, a reasonable implementation would
of course just store this (public) information directly.

Converter hibe-enc

Emulating Int. A of Chi,A→B, i ∈ [n]
Input: (send,m, ad) ∈ M×AD

require only called once
& isAvailable

// Fetch the mpk
call (j,mpk, rcv)← read

at interface A of IMempk,A

// Compute the identity
tr ← ()
for k = (rcv + 1), . . . , i− 1 do

call hk ← read
at interface A of Memtrk,A

tr ← tr ‖ hk

// Encrypt and send
call r ← sample at int. A of Randenci,A
c← HIBE.Enc(mpk, tr,m; r)
call succ← (write, c, (j, ad))

at interface A of Chi,A→B

// Store the hash
call (write, hash(c, j, ad))

at interface A of Memtri,A
return ok

Input: isAvailable
call succ← isAvailable

at interface A of Chi,A→B

call (j,mpk, rcv)← read
at interface A of IMempk,A

succ← succ ∧ ((j,mpk, rcv) 6= ⊥)
if i > 1 then

call tr ← read
at interface A of Memtri−1,A

succ← succ ∧ (tr 6= ⊥)
return succ

Emulating Int. A of Chj,B→A, j ∈ [n]
Input: receive

require only called once

// Read the message
call (m, (mpk, rcv, ad))← read

at interface A of Chj,B→A

if (m, (mpk, r, ad)) = ⊥ then
return ⊥

// Store the mpk
call (write, (j,mpk, rcv))

at interface A of IMempk,A
return (m, ad)

Input: isAvailable
call succ← isAvailable

at interface A of Chj,B→A

call (j′,mpk, rcv)← receive
at interface A of IMempk,A

return succ ∧ (j′,mpk, rcv) 6= ⊥
∧ j = j′ + 1

Figure C.5: A formal description of the converter hibe-enc for the sender.

196 Appendix C. Details of Chapter 6

Converter hibe-dec

Emulating Int. B of Chi,A→B, i ∈ [n]
Input: receive

require only called once
& isAvailable

call (c, (ep, ad))← read
at interface A of Chi,A→B

// Valid epoch?
Let emax be max s.t.

Memsk(emax ,i),B 6= ⊥
Let emin be min s.t.

Memsk(emin ,i)
,B 6= ⊥

if ep = ⊥∨¬(emin ≤ ep ≤ emax) then
valid ← false

// Decrypt
call sk ← read

at interface B of Memskep,i,B
if sk 6= ⊥ ∧ valid then

m← HIBE.Dec(sk, c)

// Update the keys
if valid ∧m 6= ⊥ then

h← hash(c, ep, ad)
for k = ep, . . . , emax do

call sk ← read
at int. B of Memsk(k,i),B

sk′ ← HIBE.Kgen(sk, h)
call (write, sk′)

at int. B of Memsk(k,i+1),B

for k = emin , . . . , emax do
call erase

at interface B of Memsk(k,i),B

if valid∧m 6= ⊥ then return (m, ad)
else return ⊥

Input: isAvailable
call succ← isAvailable

at interface B of Chi,A→B

return true iff succ and there exists
j s.t. Memsk(j,i),B 6= ⊥

Emulating Int. B of Chj,B→A, j ∈ [n]
Input: (send,m, ad) ∈ M×AD

require only called once
& isAvailable

// Number of received messages
Let i be max s.t. Memsk(j−1,i+1),B 6=
⊥ if j > 1 and 0 otherwise.

// Generate the (mpk,msk) pair
call r ← sample at int. B of Randkg,B
(mpk,msk)← HIBE.Setup(r)
call (write,m, (mpk, i, ad))

at interface A of Chk,B→A

call (write,msk)
at interface B of Memsk(j,i+1),B

return ok

Input: isAvailable
call succ← isAvailable

at interface B of Chj,B→A

return true iff succ and (j−1)-st sent

Figure C.6: A formal description of the converter hibe-dec for the
receiver.

C.2. Details of Section 6.3.2 197

C.2.2 Proof of Theorem 6.3.3

We require the HIBE scheme to be IND-CCA secure with the following
(non-standard) additional properties: first, we require that decrypting
a honestly generated ciphertext with an unauthorized decryption key
(further down or in a different path in the hierarchy) not only decrypts
to something unrelated, but fails to decrypts except with negligible
probability.1 Second, we require encryption to be truly randomized,
that is, even given the secret key, no adversary can output a message-
ciphertext pair such that a fresh encryption of the message results in
that ciphertext, except with negligible probability.2

Proof. A formal description of the simulator σhibe is presented in Fig-
ure C.7 . The simulator initially samples all randomness, for the key
generation and the encryption, and generates all the master key pairs.
Using this, it is easy to simulate the randomness resources Randkgj ,B,
Randenci,A, as well as the memories storing the master secret keys. Fur-
thermore, simulating the channels for transporting the master public
keys, and the memory Mempk,A storing them, is trivial as well. The
other memories Memsk(j,i),B and Memtri,A storing the derived secret keys
and the ciphertext hashes, respectively, can be easily simulated once we
can consistently simulate the ciphertexts.

Observe that the simulator needs to generate ciphertexts in the
following situations:

• The distinguisher explicitly queries the i-th ciphertext, or the
hash thereof.

• The distinguisher asks for the i-th secret key of the j-th epoch:
In this situation the simulator needs to generate all ciphertexts,
up to the first injection, with which the receiver updated the
j-th master secret key. After altering the keys for the j-th epoch
with an injection, we know from our additional assumption that
forwarding the correct ciphertext will cause a decryption error, so
Eve needs to provide her own, which are then used to compute
the secret keys.

1This can be achieved by including sufficient redundancy.
2For instance, IND-CCA allows the public-key to encode a message for which

encryption is deterministic, as long as one cannot devise that message from the
public key.

198 Appendix C. Details of Chapter 6

• The distinguisher injects the first message in an epoch. At this
point, the secret key is still in sync and the simulator needs to
decrypt under that key to determine the message.

To simulate the ciphertexts we follow the usual strategy: if the message
is known to the simulator at the time of simulating the ciphertext, then
he simply encrypts it. Otherwise, if only the length is known, he encrypts
the string of zeros of the same length instead. By the CCA-security of
the HIBE scheme, this is indistinguishable unless after encrypting the
fake message the simulator has to reveal an earlier secret-key for that
epoch (up to an injection) that allows for trivial decryption. Note that
keys after an injection do not reveal anything about the encryptions,
since the identities do not match.

Our interval-wise relaxation, however, means that we don’t have to
care about fake ciphertexts being exposed after each of the situation in
which the simulator had to produce one. In addition, note that whenever
the encryption randomness leaked, the simulator gets the real message
immediately, due to our additional assumption in the real world, the
simulator is allowed to fetch the message, without triggering an event,
as soon as the channel becomes insecure. Hence, he can simply encrypt
the correct message and avoid the commitment issue.

Finally, consider how delivering on the channels is handled by the
simulator. First, observe that the simulator can process the channels
in order, i.e, delay handling them until all previous ones have been
handled, since Bob will only fetch them in order. To actually handle
the i-th delivery request, the simulator proceeds as follows: firstly, he
determines whether the ciphertext, epoch number, and associated data
that Eve wants to deliver are the same as Alice sent. For the ciphertext
we can use the following strategy:

• If Alice did not send her message yet, then she also did not
sample the corresponding randomness. Hence, by our additional
assumption we know that it won’t be the same ciphertext.

• If Alice sent her message and Eve requests to forward it, it is
trivially the same.

• If Alice sent her message, and either we already simulated the
ciphertext—or the message is not secret and we can simply create
the real one now—then we can simply compare.

C.2. Details of Section 6.3.2 199

• If Alice sent her message but it is still secret (in particular, the
randomness did not leak yet) and Eve did not see the simulated
ciphertext yet, then it is a different one, since again the randomness
is unknown to Eve.

If the ciphertext matches, then we can also simply check the epoch
number and associated data.

Once the simulator knows whether Eve’s message matches Alice’s,
it knows whether Bob will update his secret keys with the correct
identity. Hence, we especially known after processing each delivery
request whether at the end Bob will still have the correct decryption key
(without having to generate them) or whether the parties are now out
of sync. Based on this information, the simulator proceeds as follows:

• If it is the same ciphertext, and Bob will use the correct decryption
key (i.e., correct epoch and key of this epoch has been updated in
sync), issue a forward command for the message. By correctness
of the scheme, this simulates decryption correctly.

• If it is the same ciphertext, but Bob uses the wrong secret key,
then issue an decryption error. By our stronger assumption, this
simulates the real-world behavior.

• If it is a different ciphertext, the simulator generates the cor-
responding decryption key, performs the decryption, and either
injects the message or triggers the decryption error, depending on
the outcome.

It remains to argue that the simulator also works correctly if Eve
tampered the transmission of the master public key, or the associated
value indicating how many messages the receiver already obtained when
creating that key. In this situation, all messages sent by Alice are treated
as insecure and the simulator, thus, can simulate the actual ciphertexts.
For delivery request, not that modifying either value will lead to Alice
encrypting for the wrong key: either the master public key or the identity
does not match. We can consider two situations: if the request happens
after it is clear that Alice uses a wrong public key or identity, then the
parties are treated as out of sync. If Eve forwards a ciphertext, then by
our assumption, Bob’s decryption will fail, which is what the simulator
replicates. For newly injected ciphertexts, the simulator anyway always

200 Appendix C. Details of Chapter 6

replicates the correct decryption. If Eve request a delivery at which
point it is unclear yet whether Alice uses the correct public key, then
the ciphertext will be treated as an injection, and the simulator just
replicates Bob’s behavior of the real world.

Simulator σhibe

Let HibeEncLen(`, d) denote the function determining the ciphertext length based
on the message length ` and the hierarchy level d.

Initialization
C,C′,AD′,TR,MPK,MPK ′,MSK,
SK, E′, R′, InSync ← array init. to⊥

(r1
kg, . . . , r

n
kg) � Rn

(r1
enc, . . . , r

n
enc) � Rn

for j ∈ [n] do
(MSK [j],MPK [j])

← HIBE.Kgen(rj
kg

)

Emulating Int. E of IMempk,A

Input: read
Let j max s.t. E received

Ch(j,B→A) and
¬E received

Ch(j+1,B→A)
if no such j exists then

return ⊥
else

return (j,MPK ′[j], R′[j])

Emulating Int. E of Memtri,A, i ∈ [n]
Input: read

if ¬Esent
Ch(i,A→B) ∨¬L

Rhibe
Mem(tri,A)(Ẽ) then

return ⊥
if TR[i] = ⊥ then

CreateTranscript(i)
E +← E leaked

Mem(tri,A)
return TR[i]

Emulating Int. E of Memsk(j,i),B,
j ∈ [n], i ∈ [n+ 1]

Input: read
if E received

Ch(i,A→B) ∨ E
error
Ch(i,A→B)

∨¬LRhibe
Mem(sk(j,i),B)(Ẽ) then

return ⊥
CreateSK(j, i)
if SK [j, i] 6= ⊥ then
E +← E leaked

Mem(ski,B)
return SK [j, i]

Emulating Int E of Randkgj,B, j ∈ [n]
Input: triggerLeaking

if ¬LRhibe
Rand(kgj,B)(Ẽ) then return ⊥

E +← E leaked
Rand(kgj,B)

return ok

Input: getLeakage
if ¬Esent

Ch(j,B→A) ∨ ¬E
leaked
Rand(kgj,B) then

return ⊥
return rj

kg

C.2. Details of Section 6.3.2 201

Emulating Int. E of Randenci,A, i∈ [n]
Input: triggerLeaking

if ¬LRhibe
Rand(enci,A)(Ẽ) then return ⊥

E +← E leaked
Rand(enci,A)

return ok

Input: getLeakage
if ¬Esent

Ch(i,A→B) ∨ ¬E
leaked
Rand(enci,A) then

return ⊥
return rienc

Emulating Int. E of Chj,B→A, j∈ [n]
Input: read

call (m, ad)← read at int. E of
Chk,B→A

if (m, ad) = ⊥ then return ⊥
else

r ← Received(j)
return (m, (MPK [j], r, ad))

Input: readLength
call (`, ad)← readLength

at interface E of Chk,B→A

if (`, ad) = ⊥ then return ⊥
else

r ← Received(j)
return (`, (MPK [j], r, ad))

Input: (error, err,Overw,m,
(mpk′, r′, ad), same)

r ← Received(j)
if same = check
∧ (mpk′, r′) 6= (MPK [j], r) then

same ← false
InSync[j, r]← false

call (error, err,Overw,m, ad, same)
at interface E of Chk,B→A

return ok

Input: (deliver,m, (mpk′, r′, ad), same)
MPK ′[j]← mpk′

R′[j]← r′

r ← Received(j)
if (mpk′, r′) = (MPK [j], r) then

InSync[j, r]← true
else

same ← false
InSync[j, r]← false

call (deliver,m, ad, same)
at interface E of Chk,B→A

return ok

Emulating Int. E of Chi,A→B, i ∈ [n]
Input: read

if LRhibe
Chan(i,A→B) = false then

return ⊥
else if LRhibe

Chan(i,A→B) = true then

E +← E leaked
Chan(i,A→B)

call (`, ad)← readLength
at interface E of Chi,A→B

e← Epoch(i)
if C[i] = ⊥ then

CreateCiphertext(i)
return (C[i], (e, ad))

Input: readLength
call (`, ad)← readLength

at interface E of Chi,A→B

if (`, ad) = ⊥ then return ⊥
e← Epoch(i)
return (HibeEncLen(`, i−1−R′[e]),

(e, ad))

Input: (deliver, c′, (e′, ad′), same)
if c′ = fwd ∧ ¬Esent

Chi,A→B then
return ⊥

At this point, if delivery of (i − 1)-st
channel not called, then output ok im-
mediately but delay processing until
then.

(E′[i],AD′[i], C′[i])← (e′, ad′, c′)
if ¬ValidEpoch(e′, i) then

call (error, dec-err, ∅, same)
at interface E of Chi,A→B

return ok

// Same ciphertext?
call (`, (e, ad))← readLength

at interface E of Chi,A→B

if (`, (e, ad)) = ⊥ then
sameC← false

else if c′ = fwd then
sameC← true

else if C[i] 6= ⊥
∨ LShibe

Chan(i,A→B)(E) = silent then
if C[i] = ⊥ then

CreateCiphertext(i)
sameC← (C[i] = c′)

else
sameC← false

(continued on next page)

202 Appendix C. Details of Chapter 6

Int E of Chi,A→B cont.
Input: deliver (continued.)

// Overall: injection?
same′ ← sameC ∧ (e′, ad′) = (e, ad)
InSync[e′, i]← InSync[e′, i− 1]

∧ same′
if ¬(same′) then same ← false

// Handle request
if sameC then

if e = e′ ∧ InSync[e′, i− 1] then
call (deliver, fwd, ad′, same)

at interface E of Chi,A→B

else
call (error, dec-err, ∅, same)

at interface E of Chi,A→B

else
if SK[e′, i] = ⊥ then

CreateSK(e′, i)
m′ ← HIBE.Dec(SK [e′, i], c′)
if m′ 6= ⊥ then

call (deliver,m′, ad′, same)
at interface E of Chi,A→B

else
call (error, dec-err, ∅, same)

at interface E of Chi,A→B

return ok

Input: (error, err,Overw, c′, (e′, ad′),
same)

if same = check then
determine same′ as in for han-
dling the deliver command above.
same ← same′ // true or false

Overw ← Overw ∪ {dec-err}
m �M // ignored
call (error, err,Overw,m, ad′, same)

at interface E of Chi,A→B

return ok

Function Epoch(i)

e = max
{
j
∣∣ E received

Ch(j,B→A) ≺ E
sent
Ch(i,A→B)

}
return e

Proc. ValidEpoch(e, i), e, i∈ [n]
rcv ← Received(e)
return E received

Ch(i−1,A→B) ∧ E
sent
Ch(e,B→A)

∧ rcv < i ∧ E′[i− 1] ≤ e

Function Received(j)

// Number of msg. Bob received
when sending the j-th msg.
r = max

(
{i∈ [n] | E received

Ch(i,A→B) ≺

Esent
Ch(j,B→A)} ∪ {0}

)
return r

Proc. CreateCiphertext(i), i ∈ [n]
e← Epoch(i)
id← ()
for k = (R′[e] + 1), . . . , (i− 1) do

if TR[k] = ⊥ then
CreateTranscript(k)

id← id ‖ TR[k]
call (m, ad)← read

at interface E of Chi,A→B

if (m, ad) = ⊥ then
call (`, ad)← readLength

at interface E of Chi,A→B

m← 0`
C[i]← HIBE.Enc(MPK ′[e], id,m; rienc)

Proc. CreateTranscript(i), i ∈ [n]
if C[i] = ⊥ then

CreateCiphertext(i)
call (`, ad)← readLenght

at interface E of Chi,A→B

TR[i]← hash(C[i],Epoch(i), ad)

Procedure CreateSK(j, i)
rcv ← Received(j)
if SK [j, i] 6= ⊥ ∨ ¬ValidEpoch(j, i)
then

return
else if i = rcv + 1 then

SK [j, i]← MSK [j]
else

CreateSK(j, i− 1)
if C′[i− 1] = fwd then

if C[i− 1] = ⊥ then
CreateCiphertext(i− 1)

C′[i− 1]← C[i− 1]
h← hash(C′[i-1], E′[i-1],AD′[i-1])
SK [j, i]← HIBE.Kgen(SK [j, i-1], h)

Figure C.7: A formal description of the simulator used for Theorem 6.3.3 .

C.3. Details of Section 6.5 203

C.3 Details of Section 6.5

C.3.1 Simulator from Theorem 6.5.1

In this section, we provide a description of the simulator used in the
proof for Theorem 6.5.1 . The simulator σCKA, as depicted in Figure C.8 ,
has to emulate the state memories and randomness resources. Moreover,
it has to adjust the channel interfaces (where the CKA-values (e, T)
are not present in the ideal world) and map the key resources to the
corresponding memory resources in the real world.

Simulator σCKA

Initialization
Sample random values (r1, . . . , r2n)
Execute the CKA scheme for 2n
epochs (with the above randomness),
and for each epoch e store the result-
ing values in γA[e], γB[e], I[e] and T [e].
Initialize the empty dictionary Tr, stor-
ing all values e and T delivered in au-
thenticated data.

Emulating Interface E of Rande,A,
odd e ∈ [2n]

Input: triggerLeaking

if ¬LRhibe
Rand(kgj,B)(Ẽ) then return ⊥

E +← E leaked
Rand(e,A)

return ok

Input: getLeakage
Using the event history, determine the
epoch eA, such that Alice is currently
in eA.
if eA < e ∨ ¬E leaked

Rand(e,A) then
return ⊥

return re

Emulating Interface E of IMemep,A

Input: read
Using the event history, determine the
epoch eA, such that Alice is currently
in eA.
return eA

Emulating Interface E of Chi,A→B,
i ∈ [n]

Input: read
If LRCKA

Chan(i,A→B) = false, return ⊥.
call (m, ad)← read

at interface E of Chi,A→B

Determine the i-th message’s epoch e
from the event history.
return (m, (ad, e, T [e]))

Input: readLength
call (`, ad)← read

at interface E of Chi,A→B

Determine the i-th message’s epoch e
from the event history.
return (`, (ad, e, T [e]))

Input: (deliver,m, (ad′, e′, T ′), same′)
require only called once
Tr[i, B]← (e′, T ′)
if T [e′] 6= T ′ then

Rerun CKA scheme from e′ on
(with original randomness) and
overwrite the respective values in
γA[e], γB[e], I[e] and T [e].

call (inject, inj(Tr, e, B, ·), B)
at interface E of Keye,(A,B)

Forward the command (without e′ and
T ′) to the ideal channel
return ok

Input: (error, err, O,m, (ad′, e′, T ′),
same′)

Forward the input (without e′ and T ′)
to the ideal channel
return ok.

204 Appendix C. Details of Chapter 6

Emulating Interface E of Memste,A,
e ∈ {0, . . . , 2n} (including CKA-Setup)

Input: read
Using the event history, determine the
epoch eA Alice is currently in.
if e 6= eA then return ⊥
E +← E leaked

Mem(ste,A)
if e is even then

return γA[e]
else

return (γA[e], T [e])

Function inj(Tr, e′, γA, γB, I, B, E)
With the help the event history E, the
transcript Tr and the values γA, γB, I,
run Bob’s protocol and determine the
key k he outputs in epoch e′ (set k =
⊥ if this key has not been produced
yet). Output k.

Emulating Interface E of OMemkeye,A,
e ∈ [2n]

Input: read
Using the event history, determine the
epoch eA, such that Alice is currently
in eA.
if e > eA then return ⊥
call k ← (read, A)

at interface E of Keye,(A,B)

return k

Figure C.8: The simulator for the CKA protocol, depicting the interfaces
corresponding to Alice’s resources. The interface for Bob’s resources
are analogous.

Bibliography

[ACD19] J. Alwen, S. Coretti, and Y. Dodis, “The double ratchet:
Security notions, proofs, and modularization for the signal
protocol”, in Advances in Cryptology — EUROCRYPT
2019, Y. Ishai and V. Rijmen, Eds., Berlin, Heidelberg:
Springer International Publishing, 2019.

[BDHK06] M. Backes, M. Dürmuth, D. Hofheinz, and R. Küsters,
“Conditional reactive simulatability”, in Computer Security
— ESORICS 2006, D. Gollmann, J. Meier, and A. Sabelfeld,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 424–443.

[BPW07] M. Backes, B. Pfitzmann, and M. Waidner, “The reactive
simulatability (rsim) framework for asynchronous systems”,
Information and Computation, vol. 205, no. 12, pp. 1685–
1720, 2007. doi: https://doi.org/10.1016/j.ic.2007.
05.002 .

[BHK13a] M. Bellare, V. T. Hoang, and S. Keelveedhi, Instantiat-
ing random oracles via uces, Cryptology ePrint Archive,
Report 2013/424 (preliminary version June 2013), https:
//eprint.iacr.org/2013/424 , Jun. 2013.

[BHK13b] ——, “Instantiating Random Oracles via UCEs”, in Ad-
vances in Cryptology — CRYPTO 2013, Springer Berlin
Heidelberg, Aug. 2013, pp. 398–415.

[BHK14] ——, “Cryptography from compression functions: The
UCE bridge to the ROM”, in Advances in Cryptology —

https://doi.org/https://doi.org/10.1016/j.ic.2007.05.002
https://doi.org/https://doi.org/10.1016/j.ic.2007.05.002
https://eprint.iacr.org/2013/424
https://eprint.iacr.org/2013/424

206 Bibliography

CRYPTO 2014. Springer Berlin Heidelberg, 2014, pp. 169–
187.

[BR93] M. Bellare and P. Rogaway, “Random oracles are practical:
A Paradigm for Designing Efficient Protocols”, in 1st ACM
Conference on Computer and Communications Security —
CCS 93, ACM Press, 1993, pp. 62–73.

[BSJ+17] M. Bellare, A. C. Singh, J. Jaeger, M. Nyayapati, and
I. Stepanovs, “Ratcheted encryption and key exchange:
The security of messaging”, in Advances in Cryptology —
CRYPTO 2017, 2017, pp. 619–650.

[Blu83] M. Blum, “Coin flipping by telephone a protocol for solving
impossible problems”, SIGACT News, vol. 15, no. 1, pp. 23–
27, Jan. 1983. doi: 10.1145/1008908.1008911 .

[BF01] D. Boneh and M. Franklin, “Identity-based encryption
from the weil pairing”, in Advances in Cryptology — CRYP-
TO 2001, J. Kilian, Ed., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 213–229.

[BK12] Z. Brakerski and Y. Kalai, “A parallel repetition theorem
for leakage resilience”, in Theory of Cryptography — TCC
2012, Springer Berlin Heidelberg, 2012, pp. 248–265.

[BDH+17] B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade,
and M. Nagel, “Concurrently composable security with
shielded super-polynomial simulators”, in Advances in
Cryptology — EUROCRYPT 2017, J.-S. Coron and J. B.
Nielsen, Eds., Cham: Springer International Publishing,
2017, pp. 351–381.

[BFM14] C. Brzuska, P. Farshim, and A. Mittelbach, “Indistin-
guishability Obfuscation and UCEs: The Case of Compu-
tationally Unpredictable Sources”, in Advances in Cryptol-
ogy — CRYPTO 2014, Springer Berlin Heidelberg, 2014,
pp. 188–205.

[BM14] C. Brzuska and A. Mittelbach, “Using Indistinguishabil-
ity Obfuscation via UCEs”, in Advances in Cryptology
— ASIACRYPT 2014, Springer Berlin Heidelberg, 2014,
pp. 122–141.

https://doi.org/10.1145/1008908.1008911

Bibliography 207

[CEK+16] J. Camenisch, R. R. Enderlein, S. Krenn, R. Küsters,
and D. Rausch, “Universal composition with responsive
environments”, in Advances in Cryptology — ASIACRYPT
2016, J. H. Cheon and T. Takagi, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 807–840.

[CKKR19] J. Camenisch, S. Krenn, R. Küsters, and D. Rausch, “Iuc:
Flexible universal composability made simple”, in Advances
in Cryptology — ASIACRYPT 2019, S. D. Galbraith and
S. Moriai, Eds., Cham: Springer International Publishing,
2019, pp. 191–221.

[Can01] R. Canetti, “Universally Composable Security: A New
Paradigm for Cryptographic Protocols”, in 42nd IEEE
Symposium on Foundations of Computer Science — FOCS
2001, IEEE Computer Society, 2001, pp. 136–145.

[CDPW07] R. Canetti, Y. Dodis, R. Pass, and S. Walfish, “Univer-
sally composable security with global setup”, in Theory
of Cryptography, S. P. Vadhan, Ed., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 61–85.

[CFGN96] R. Canetti, U. Feige, O. Goldreich, and M. Naor, “Adap-
tively secure multi-party computation”, in Proceedings of
the Twenty-eighth Annual ACM Symposium on Theory
of Computing, ser. STOC ’96, Philadelphia, Pennsylvania,
USA: ACM, 1996, pp. 639–648. doi: 10.1145/237814.
238015 .

[CF01] R. Canetti and M. Fischlin, “Universally composable com-
mitments”, in Advances in Cryptology — CRYPTO 2001,
J. Kilian, Ed., Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2001, pp. 19–40.

[CGH04] R. Canetti, O. Goldreich, and S. Halevi, “The random
oracle methodology, revisited”, Journal of the ACM, vol. 51,
no. 4, pp. 557–594, Jul. 2004.

[CHK03] R. Canetti, S. Halevi, and J. Katz, “A forward-secure
public-key encryption scheme”, in Advances in Cryptology
— EUROCRYPT 2003, E. Biham, Ed., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 255–271.

https://doi.org/10.1145/237814.238015
https://doi.org/10.1145/237814.238015

208 Bibliography

[CHK05] ——, “Adaptively-secure, non-interactive public-key en-
cryption”, in TCC 2005: 2nd Theory of Cryptography Con-
ference, J. Kilian, Ed., ser. Springer, Heidelberg, vol. 3378,
Springer, Heidelberg, 2005, pp. 150–168.

[CK02] R. Canetti and H. Krawczyk, “Universally composable
notions of key exchange and secure channels”, in Advances
in Cryptology — EUROCRYPT 2002, L. R. Knudsen,
Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
pp. 337–351.

[CR03] R. Canetti and T. Rabin, “Universal composition with joint
state”, in Advances in Cryptology — CRYPTO 2003, D.
Boneh, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 265–281.

[CCD+17] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt,
and D. Stebila, “A Formal Security Analysis of the Signal
Messaging Protocol”, 2nd IEEE European Symposium on
Security and Privacy, EuroS and P 2017, pp. 451–466,
2017.

[DFR+07] I. B. Damgård, S. Fehr, R. Renner, L. Salvail, and C.
Schaffner, “A Tight High-Order Entropic Quantum Uncer-
tainty Relation with Applications”, in Advances in Cryp-
tology — CRYPTO 2007, Springer Berlin Heidelberg, 2007,
pp. 360–378.

[DGHM13] G. Demay, P. Gaži, M. Hirt, and U. Maurer, “Resource-
Restricted Indifferentiability”, in Advances in Cryptology
— EUROCRYPT 2013, Springer Berlin Heidelberg, 2013,
pp. 664–683.

[DGMT17] G. Demay, P. Gaži, U. Maurer, and B. Tackmann, “Per-
session security: Password-based cryptography revisited”,
in Computer Security — ESORICS 2017, S. N. Foley,
D. Gollmann, and E. Snekkenes, Eds., Cham: Springer
International Publishing, 2017, pp. 408–426.

[DV18] F. B. Durak and S. Vaudenay, Bidirectional asynchronous
ratcheted key agreement with linear complexity, Cryptology
ePrint Archive, Report 2018/889, https://eprint.iacr.
org/2018/889 , 2018.

https://eprint.iacr.org/2018/889
https://eprint.iacr.org/2018/889

Bibliography 209

[FM16] P. Farshim and A. Mittelbach, “Modeling Random Ora-
cles Under Unpredictable Queries”, in Fast Software En-
cryption — FSE 2016, Springer Berlin Heidelberg, 2016,
pp. 453–473.

[HMM15] D. Hofheinz, C. Matt, and U. Maurer, “Idealizing identity-
based encryption”, in Advances in Cryptology – ASIA-
CRYPT 2015, T. Iwata and J. H. Cheon, Eds., ser. Lec-
ture Notes in Computer Science, vol. 9452, Springer Berlin
Heidelberg, 2015, pp. 495–520.

[HS15] D. Hofheinz and V. Shoup, “Gnuc: A new universal com-
posability framework”, Journal of Cryptology, vol. 28, no. 3,
pp. 423–508, Jul. 2015. doi: 10.1007/s00145-013-9160-
y .

[JS18] J. Jaeger and I. Stepanovs, “Optimal Channel Security
Against Fine-Grained State Compromise: The Safety of
Messaging”, in Advances in Cryptology — CRYPTO 2018,
H. Shacham and A. Boldyreva, Eds., Springer, 2018, pp. 33–
62.

[JM18] D. Jost and U. Maurer, “Security definitions for hash
functions: Combining uce and indifferentiability”, in Secu-
rity and Cryptography for Networks, D. Catalano and R.
De Prisco, Eds., Springer International Publishing, 2018,
pp. 83–101.

[JM20] ——, “Overcoming impossibility results in composable
security using interval-wise guarantees”, in Advances in
Cryptology — CRYPTO 2020, (to appear), Cham: Springer
International Publishing, 2020.

[JMM19a] D. Jost, U. Maurer, and M. Marta, “Efficient ratcheting:
Almost-optimal guarantees for secure messaging”, in Ad-
vances in Cryptology — EUROCRYPT 2019, Y. Ishai and
V. Rijmen, Eds., Berlin, Heidelberg: Springer International
Publishing, 2019.

[JMM19b] D. Jost, U. Maurer, and M. Mularczyk, “A unified and
composable take on ratcheting”, in Theory of Cryptography
— TCC 2019, D. Hofheinz and A. Rosen, Eds., Cham:
Springer International Publishing, Dec. 2019, pp. 180–210.

https://doi.org/10.1007/s00145-013-9160-y
https://doi.org/10.1007/s00145-013-9160-y

210 Bibliography

[Kra01] H. Krawczyk, “The order of encryption and authentication
for protecting communications (or: How secure is ssl?)”,
in Advances in Cryptology — CRYPTO 2001, J. Kilian,
Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,
pp. 310–331.

[KTR13] R. Kuesters, M. Tuengerthal, and D. Rausch, The iitm
model: A simple and expressive model for universal com-
posability, Cryptology ePrint Archive, Report 2013/025,
https://eprint.iacr.org/2013/025 , 2013.

[Mau11] U. Maurer, “Constructive Cryptography–A New Paradigm
for Security Definitions and Proofs”, in Theory of Secu-
rity and Applications — TOSCA 2011, Springer Berlin
Heidelberg, 2011, pp. 33–56.

[MRH04] U. Maurer, R. Renner, and C. Holenstein, “Indifferentia-
bility, impossibility results on reductions, and applications
to the random oracle methodology”, in Theory of Cryp-
tography — TCC 2004, Springer Berlin Heidelberg, 2004,
pp. 21–39.

[Mau02] U. Maurer, “Indistinguishability of random systems”, in
Advances in Cryptology — EUROCRYPT 2002, L. R.
Knudsen, Ed., Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2002, pp. 110–132.

[Mau13] ——, “Conditional equivalence of random systems and
indistinguishability proofs”, in 2013 IEEE International
Symposium on Information Theory, IEEE, 2013, pp. 3150–
3154.

[MPR07] U. Maurer, K. Pietrzak, and R. Renner, “Indistinguishabil-
ity amplification”, in Advances in Cryptology — CRYPTO
2007, A. Menezes, Ed., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 130–149.

[MR11] U. Maurer and R. Renner, “Abstract cryptography”, in In
Innovations in Computer Science — ICS 2011, Tsinghua
University, 2011, pp. 1–21.

[MR16] ——, “From Indifferentiability to Constructive Cryptog-
raphy (and Back)”, in Theory of Cryptography — TCC
2016, Springer Berlin Heidelberg, 2016, pp. 3–24.

https://eprint.iacr.org/2013/025

Bibliography 211

[MT10] U. Maurer and B. Tackmann, “On the soundness of authen-
ticate-then-encrypt: Formalizing the malleability of sym-
metric encryption”, in Proceedings of the 17th ACM Con-
ference on Computer and Communication Security, A. D.
Keromytis and V. Shmatikov, Eds., ACM, ACM, Oct. 2010,
pp. 505–515.

[Mit14] A. Mittelbach, “Salvaging Indifferentiability in a Multi-
stage Setting”, in Advances in Cryptology — EUROCRYPT
2014, Springer Berlin Heidelberg, 2014, pp. 603–621.

[Nie02a] J. B. Nielsen, “Separating random oracle proofs from com-
plexity theoretic proofs: The non-committing encryption
case”, in Advances in Cryptology — CRYPTO 2002, M.
Yung, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 111–126.

[Nie02b] ——, “Separating random oracle proofs from complexity
theoretic proofs: The non-committing encryption case”,
in Advances in Cryptology — CRYPTO, M. Yung, Ed.,
ser. Lecture Notes in Computer Science, vol. 2442, Springer,
Heidelberg, 2002, pp. 111–126. doi: 10.1007/3- 540-
45708-9_8 .

[OWS17] Open Whisper Systems. Signal protocol library for java/an-
droid. GitHub repository, Accessed: 2018-10-01, 2017. [On-
line]. Available: https://github.com/WhisperSystems/
libsignal-protocol-java .

[Pas03] R. Pass, “Simulation in quasi-polynomial time, and its
application to protocol composition”, in Advances in Cryp-
tology — EUROCRYPT 2003, E. Biham, Ed., Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2003, pp. 160–176.

[PW01] B. Pfitzmann and M. Waidner, “A model for asynchronous
reactive systems and its application to secure message
transmission”, in Proceedings 2001 IEEE Symposium on
Security and Privacy — S&P 2001, May 2001, pp. 184–200.
doi: 10.1109/SECPRI.2001.924298 .

https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8
https://github.com/WhisperSystems/libsignal-protocol-java
https://github.com/WhisperSystems/libsignal-protocol-java
https://doi.org/10.1109/SECPRI.2001.924298

212 Bibliography

[Poe18] Poettering, Bertram and Rösler, Paul, “Towards Bidirec-
tional Ratcheted Key Exchange”, in Advances in Cryptol-
ogy — CRYPTO 2018, H. Shacham and A. Boldyreva, Eds.,
Cham: Springer International Publishing, 2018, pp. 3–32.

[PS04] M. Prabhakaran and A. Sahai, “New notions of security:
Achieving universal composability without trusted setup”,
in Proceedings of the Thirty-sixth Annual ACM Symposium
on Theory of Computing, ser. STOC ’04, Chicago, IL,
USA: ACM, 2004, pp. 242–251. doi: 10.1145/1007352.
1007394 .

[RSS11] T. Ristenpart, H. Shacham, and T. Shrimpton, “Careful
with Composition: Limitations of Indifferentiability and
Universal Composability”, in Advances in Cryptology —
EUROCRYPT 2011, Springer Berlin Heidelberg, 2011,
pp. 487–506.

[ST17] P. Soni and S. Tessaro, “Public-Seed Pseudorandom Per-
mutations”, in Advances in Cryptology — EUROCRYPT
2017, Springer International Publishing, 2017, pp. 412–441.

[Wul07] J. Wullschleger, “Oblivious-Transfer Amplification”, in
Advances in Cryptology — EUROCRYPT 2007, Springer
Berlin Heidelberg, 2007, pp. 555–572.

https://doi.org/10.1145/1007352.1007394
https://doi.org/10.1145/1007352.1007394

	Introduction
	Motivation
	Game-Based Security Definitions
	Composable Security Definitions

	Overview and Contributions
	Advancing Composable Security
	A Case Study: Secure Messaging

	Related Work

	Preliminaries
	Notation
	General Notation and Information Theory
	Pseudo-Code for Algorithms and Systems

	Constructive Cryptography
	Specifications.
	The System Algebra
	The Construction Notion
	Relaxations
	Two Important Special Cases
	An Example

	Constructive Cryptography with Events
	Introduction
	Motivation
	Contributions
	Related Work

	Systems with Events
	The Global Event History
	Event-Aware Systems

	Constructions and Relaxations
	Event-Aware Reductions
	Event Renaming

	Context-Restricted Constructions
	Introduction
	Motivation
	Universal Computational Extractors
	Indifferentiability
	Contributions
	Related Work

	Context-Restricted Constructions
	Modeling Context Restrictions
	Composition
	The Relation to Regular Constructions
	An Example: Diffie-Hellman Key Exchange

	UCE as a Special Case
	Constructing Random Oracles
	Non-Interactive Contexts
	RO-CRI Security Implies UCE Security

	Public-Seed PRPs as a Special Case
	Public-Seed Pseudorandomness
	Ideal Primitives and Function Families
	CRI-Security Implies psPR-Security

	Generalizing Split-Security
	Split-Security
	An Alternative Representation
	Strong-Split Security
	Strict Min-Entropy Seeds
	The Repeated Split-Source Context Set
	The Relation Between ICE and Strong-Split RO-CRI

	Split-Security of the Merkle-Damgård Construction
	Motivation
	Formalizing the Theorem
	Proof of Theorem 4.6.3
	A Sufficient Condition Based on Min-Entropy Splitting

	Overcoming the Commitment Problem
	Introduction
	Motivation
	Contributions
	Related Work
	The Constructive Cryptography Setting

	Interval-Wise Guarantees: Motivation and Intuition
	A Motivating Example
	A Naive Attempt
	Our Solution

	Interval-Wise Guarantees: Definitions
	Guarantees up to Some Point
	Guarantees From Some Point On
	The Interval-Wise Relaxation
	The Resulting Construction Notion

	Application to Commitment Schemes and Coin-Tossing
	Perfectly Binding Commitments
	Coin-Tossing

	Revisiting Composable Identity-Based Encryption
	Background and Motivation
	The Real and Ideal Worlds
	The Composable Statement

	A Case Study: Secure Messaging
	Introduction
	Motivation
	Contributions
	The Constructive Cryptography Setting

	The Unified Composable Statement
	The Approach
	Our Channel Model
	Memory and Randomness Resources

	Unifying Ratcheting: Two Examples
	A Simple Authentication Scheme
	Confidentiality from HIBE

	Adaptive Security
	Overview
	Combining RNCE with HIBE

	Asynchronous Ratcheting as Continuous Key Agreement

	Conclusion
	Details of Chapter 4
	Proof of Lemma 4.5.8

	Details of Chapter 5
	Details of Section 5.3
	Proof of Theorem 5.3.12
	Proof of Theorem 5.3.16
	Proof of Proposition 5.3.20

	Details of Section 5.4
	ElGamal Commitments
	Coin-Tossing

	Details of Chapter 6
	Details of Section 6.3.1
	Key-Updating Signatures
	The Authentication Protocol
	Proof of Theorem 6.3.1

	Details of Section 6.3.2
	The Sesqui-directional HIBE Protocol
	Proof of Theorem 6.3.3

	Details of Section 6.5
	Simulator from Theorem 6.5.1

